We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Image Analysis Module Detects Cancers at the Time of Surgery

By LabMedica International staff writers
Posted on 26 May 2022
Print article
Image: NIO Laser Imaging System (Photo courtesy of Invenio Imaging)
Image: NIO Laser Imaging System (Photo courtesy of Invenio Imaging)

A new image analysis module based on deep learning allows neurosurgeons to identify areas of cancer infiltration in patients undergoing primary treatment of a diffuse glioma, providing cancer detection where they really need it and dramatically improving brain tumor surgery.

Invenio Imaging Inc.’s (Santa Clara, CA, USA) NIO Laser Imaging System uses Stimulated Raman Histology to image unprocessed tissue specimen without sectioning or staining, enabling histologic evaluation outside the laboratory. It has been used in over 2000 brain tumor procedures across multiple institutions in the US and in Europe. SRH allows three-dimensional imaging of thick specimens using optical sectioning and relies on laser spectroscopy to interrogate the chemical composition of the sample. As such, it does not require physical sectioning, (e.g. with a microtome on frozen or paraffin-embedded tissue) or dye staining, and it allows optical imaging of fresh tissue specimens with minimal tissue preparation.

In contrast to other laser spectroscopy techniques, SRH is unique in that it performs a spectroscopic measurement at each pixel and displays the results as a pseudo-color image, instead of a point spectrum. The NIO Laser Imaging System uses a high numerical aperture objective with 25x magnification and a 0.5mm scan width. Larger areas up to 10mm x 10mm can then be acquired by stitching multiple fields of view in a fully automated process. NIO images are natively digital and can be shared with existing IT infrastructure via a vendor-neutral DICOM interface. The NIO Glioma Reveal image analysis module now adds immediate decision support to the NIO Laser Imaging System by allowing the imaging of multiple samples from the resection cavity. Invenio has received the CE Mark for the NIO Glioma Reveal image analysis module, allowing neurosurgeons in the EU to use it to inform intraoperative decisions.

"By streamlining intraoperative tissue imaging, the NIO Laser Imaging System allows the imaging of multiple samples from the resection cavity. The NIO Glioma Reveal image analysis module now adds immediate decision support", said Chris Freudiger, PhD, co-founder and CTO of Invenio Imaging.

"Glioma Reveal provides cancer detection where we really need it, dramatically improving brain tumor surgery," added Prof. Dr. Jürgen Beck, Chair of Neurosurgery at the University of Freiburg.

"Applying reliable artificial intelligence to digital pathology appears to me, as a surgeon, to be the missing piece in the puzzle of rapid intraoperative histology-based decision-making," said Asst. Prof. Dr. Volker Neuschmelting, Vice-Chair of Neurosurgery at the University of Cologne.

"The NIO Laser Imaging System can also be combined with other important imaging techniques such as 5-ALA fluorescence to further improve brain tumor detection during surgery," explained Prof. Dr. Georg Widhalm, neurosurgeon at the University of Vienna.

Related Links:
Invenio Imaging Inc.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more