We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lab-on-a-Chip Technology Detects Hard-to-Diagnose Diseases

By LabMedica International staff writers
Posted on 13 May 2022
Print article
Image: Lab-on-a-chip technology enables rapid testing for various human ailments (Photo courtesy of University of Kansas)
Image: Lab-on-a-chip technology enables rapid testing for various human ailments (Photo courtesy of University of Kansas)

A new technology takes small plastic chips made of the same material as a compact disc or DVD, then transforms them into marvels of engineering and chemistry that quickly can detect hard-to-diagnose human diseases using saliva, urine or blood from a patient. The liquid biopsies can detect circulating tumor cells, cell-free DNA, viruses and vesicles that are released by biological cells associated with a particular disease.

The technology developed at the Center of BioModular Multi-Scale Systems for Precision Medicine, dubbed CBM2, a research center based at the University of Kansas (Lawrence, KS, USA), is pushing forward the boundaries of precision medicine, improving and extending the lives of patients, and creating commercialization partnerships as well as new training and education opportunities. CBM2 recently earned USD 6.6 million in continued funding over the next five years from the National Institutes of Health's National Institute of Biomedical Imaging and Bioengineering (NIBIB) as a National Biotechnology Resource (P41) Center.

Much of the work of CBM2 takes place in collaboration with partners. For instance, researchers at CBM2 are working to develop a handheld instrument to spot viruses giving rise to COVID-19 and to detect ovarian cancer early in women with a high family risk. This kind of cancer detection uses a few blood drops placed on a plastic chip created by the center to look for very small vesicles - the presence of which indicates early stage of cancer that will provide better survival compared to current diagnostic methods. The medical advances developed at CBM2 already are helping patients through commercial partnerships with private firms, and some of these products already are in use to improve outcomes of cancer patients.

Additionally, CBM2 is working on clinical trials to evaluate new therapeutics for pancreatic cancer, which accounts for 7% of cancer deaths across the U.S. The circulating tumor cells are secured from a blood sample using a plastic microchip. Other important research initiatives include a project on a test using small vesicles as markers for a point-of-care test for diagnosing ischemic stroke. The test can be completed in about 30 minutes to help decide how best to treat patients with stroke. In another effort, CBM2 is developing a new nanotechnology platform for sequencing RNA and DNA to detect changes to the RNA genome of viruses that give rise to variants, such as those associated with COVID-19.

“We develop little USD 2 widgets made from a plastic by injection molding that can take a liquid biopsy sample and search for different types of markers that can help a physician manage disease,” said CBM2 director Steven Soper. “To give you an example, this little chip is used to isolate tumor cells out of the blood of cancer patients. A physician will take a sample of blood from the patient, put it into the chip to enrich the tumor cells from the blood sample - there's very few of them, maybe about 10 or so - and then we open those cells to look at the genetic composition to help decide: does the patient have a disease, how to treat the disease, is the patient responding to therapy?”

Related Links:
University of Kansas

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more