We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Single-Cell Transcriptomic Analysis Traces Neuroblastomas to Developing Adrenal Neuroblasts

By LabMedica International staff writers
Posted on 07 Apr 2021
Print article
Image: Bone marrow aspirate from a child with a mediastinal tumor shows an invasion with neuroblastoma cells and characteristic images of neuropile threads (Photo courtesy of Mohammed Bensalah, MD, Amina Lyagoubi, and Rachid Seddik)
Image: Bone marrow aspirate from a child with a mediastinal tumor shows an invasion with neuroblastoma cells and characteristic images of neuropile threads (Photo courtesy of Mohammed Bensalah, MD, Amina Lyagoubi, and Rachid Seddik)
Neuroblastoma is the most common cancer in infants and the third-most common cancer in children after leukemia and brain cancer. Approximately one in every 7,000 children is affected at some time and about 90% of cases occur in children less than five years old, and it is rare in adults.

Neuroblastoma is a type of cancer that forms in certain types of nerve tissue. It most frequently starts from one of the adrenal glands, but can also develop in the neck, chest, abdomen, or spine. Symptoms may include bone pain, a lump in the abdomen, neck, or chest, or a painless bluish lump under the skin.

Pediatric Oncologists at the Hopp Children's Cancer Center Heidelberg (Heidelberg, Germany) analyzed samples from 17 fresh-frozen developing human adrenal glands using droplet-based single-nucleus RNA-seq. These samples represented seven developmental time points ranging from seven weeks post-conception to 17 weeks post-conception. They clustered the cells and assigned them to major cell types based on the markers they expressed, but focused much of their analysis on adrenal medullary cells such as Schwann cell precursors, chromaffin cells, and neuroblasts.

By comparing these normal developing human adrenal gland cells to cells from 14 neuroblastomas also analyzed by single-nucleus RNA-seq, the team found that the tumors resembled differentiating adrenal neuroblasts and they also noticed some differences by tumor type. For instance, MYCN-amplified neuroblastoma cells were most similar to normal neuroblasts from seven or eight weeks post-conception, while lower-risk neuroblastomas included more cells resembling late neuroblasts. This suggested that low-risk tumors might develop from cells further along in the development and differentiation process. They confirmed this finding by projecting single neuroblastoma cells onto diffusion maps of normal adrenal medullary cells to again find neuroblastoma cells mapped to normal neuroblasts and that low-risk tumors were more similar to differentiated neuroblasts and high-risk ones to earlier-state neuroblasts. They additionally found that differentiation markers varied between high-risk and low-risk tumors.

The scientists then examine whether MYCN, often amplified among high-risk tumors, can suppress differentiation. In an inducible MYCN knock-down model of MYCN-amplified neuroblastoma cells, they found that elevated MYCN can induce de-differentiation and activate proliferation. At the same time, though, activating TFAP2B, a transcription factor that is highly expressed in normal neuroblasts but not in high-risk neuroblastomas, restores differentiation signatures.

The authors concluded that the identification of tumor-related transcriptional changes and molecular mechanisms underlying impaired differentiation may guide future studies on the functional evaluation of candidate genes, refined risk classification and generation of clinically relevant neuroblastoma models. Moreover, they have provided the framework to evaluate therapeutic concepts that are based on induction of differentiation. The study was published on March 25, 2021 in the journal Nature Genetics.

Related Links:
Hopp Children's Cancer Center Heidelberg

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more