LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Urine-Based Liquid Biopsy Test Detects Urothelial Carcinoma

By LabMedica International staff writers
Posted on 22 Oct 2020
Print article
Image: The HiSeq XTen human whole- genome sequencing system (Photo courtesy of Illumina).
Image: The HiSeq XTen human whole- genome sequencing system (Photo courtesy of Illumina).
Urine cytology, which is widely used to screen for bladder cancer, has high specificity but lacks sensitivity, especially for low-grade cancers. Cystoscopy, while more accurate than cytology, is an invasive procedure with added costs and potential complications for the patient.

An inexpensive, non-invasive test for the detection and monitoring of bladder cancer is an unmet clinical need. The DNA isolated from urine exfoliated cells, a complex cell mixture that potentially includes tumor cells shed from the lining of the bladder, can provide clues to the presence of bladder cancer.

Urologists at the Changhai Hospital (Shanghai, China) and their colleagues used samples from patients enrolled in an observational clinical trial in Shanghai that is evaluating the a newly developed assay. A total of 190 patients (126 with urothelial carcinoma, 64 without cancer) participated in the discovery phase; no significant copy number variants (CNV) burden was detected in those without cancer. The scientists then developed a diagnostic model which incorporated all autosomal chromosomal changes in urine exfoliated cells.

The assay begins with a urine sample and following urine sedimentation and DNA extraction, the samples were analyzed using low-coverage whole-genome sequencing (LC-WGS). Urine-exfoliated cell DNA was analyzed by Illumina HiSeq XTen (Illumina, San Diego, USA) followed by genotyping with a customized bioinformatics workflow named Urine Exfoliated Cells Copy Number Aberration Detector (UroCAD). Because the assay relies on the detection of overall CNV burden, and not on the identification of specific genetic alterations, this cost-effective sequencing method was an ideal technique for sample analysis.

The UroCAD assay was evaluated in a validation cohort comprising 95 patients (56 with urothelial carcinoma, 39 without cancer). When compared with urine cytology, the investigators found that UroCAD had significantly higher sensitivity (80.4% versus 33.9%) and comparable specificity (94.9% versus 100%) for the detection of urothelial carcinoma. Further, in the seven patients whose low-grade tumors were confined to the epithelial layer of the bladder (pTa tumors), UroCAD had a sensitivity of 71.4%, while urine cytology had a sensitivity of 0%.

The sensitivity of UroCAD corresponded with tumor grade, as it could detect low-grade and high-grade urothelial carcinoma with a sensitivity of 60% and 86.6%, respectively. Further, the sensitivity of the test correlated with tumor size; the sensitivity of detection for tumors of 1 cm or less, tumors between 1 and 3 cm, and tumors greater than 3 cm was 66.7%, 72%, and 95.5%, respectively.

Jia-Tao Ji, MD, PhD, a Urologist and a senior author of the study, said, “"For patients with hematuria or who have suspected urothelial carcinoma, UroCAD is a promising way to replace cytology and to reduce repeated cystoscopy examinations.”

The authors concluded that UroCAD could be a robust urothelial carcinoma diagnostic method with improved sensitivity and similar specificity as compared with cytology tests. It may be used as a noninvasive approach for diagnosis and recurrence surveillance in urothelial carcinoma prior to the use of cystoscopy, which would largely reduce the burden on patients. The study was published on October 9, 2020 in the journal Clinical Cancer Research.




Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more