We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Autonomous Microchannel Analyzer Combines with Smartphone for Off-Site Disease Diagnostics

By LabMedica International staff writers
Posted on 18 Feb 2020
Print article
Image: The photo shows a portable lab that plugs into a smartphone to diagnose diseases like malaria or coronavirus (Photo courtesy of Joseph Fuqua II, University of Cincinnati Creative Services)
Image: The photo shows a portable lab that plugs into a smartphone to diagnose diseases like malaria or coronavirus (Photo courtesy of Joseph Fuqua II, University of Cincinnati Creative Services)
A novel microchannel capillary flow assay platform for detection of pathogenic microorganisms or other antigens combines with a smartphone for display, data transfer, storage, and analysis.

Investigators at the University of Cincinnati (OH, USA) built the microchannel capillary flow assay (MCFA) platform to perform chemiluminescence based ELISA tests with lyophilized chemiluminescent reagents. The MCFA platform exploits the ultra-high sensitivity of chemiluminescent detection while eliminating the shortcomings associated with liquid reagent handling, control of assay sequence, and user intervention.

Functionally designed microchannels along with adequate hydrophilicity provided by the saliva sample produce a sequential flow of assay reagents, and the device autonomously performs the ultra-high sensitive chemiluminescence based ELISA. An attached smartphone for display, data transfer, storage and analysis, as well as the source of power, enabled the development of a point-of-care-testing (POCT) analyzer for disease diagnostics.

The current report described the use of the MCFA device for detection of the malaria biomarker PfHRP2. For this antigen a limit of detection (LOD) of eight nanograms per milliliter was achieved, which is sensitive enough to detect active malarial infection.

Furthermore, the investigators assert that the device can be adapted to diagnose other infectious diseases such as coronavirus, HIV or Lyme disease or innumerable other health conditions such as depression and anxiety.

"The performance is comparable to laboratory tests. The cost is cheaper. And it is user-friendly," said senior author Dr. Chong Ahn, distinguished university research professor at the University of Cincinnati. "We wanted to make it simple so anyone could use it without training or support. Right now it takes several hours or even days to diagnose in a lab, even when people are showing symptoms. The disease can spread."

The MCFA device was described in the January 27, 2020, online edition of the journal Microsystems & Nanoengineering.

Related Links:
University of Cincinnati

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more