We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Urinary Cell-Free DNA Detects Urothelial Carcinoma

By LabMedica International staff writers
Posted on 08 Jan 2020
Print article
Image: The Agilent Technologies 2100 Bioanalyzer system is an established automated electrophoresis tool for the sample quality control of biomolecules (Photo courtesy of Laboratory Controls LLC)
Image: The Agilent Technologies 2100 Bioanalyzer system is an established automated electrophoresis tool for the sample quality control of biomolecules (Photo courtesy of Laboratory Controls LLC)
Most bladder cancers start in the innermost lining of the bladder, which is called the urothelium or transitional epithelium. As the cancer grows into or through the other layers in the bladder wall, it has a higher stage, becomes more advanced, and can be harder to treat.

Urothelial carcinoma, also known as transitional cell carcinoma (TCC), is by far the most common type of bladder cancer. Current noninvasive assays for urothelial carcinoma (UC) lack clinical sensitivity and specificity. Given the utility of plasma cell-free DNA (cfDNA) bio-markers, the development of urinary cfDNA biomarkers may improve the diagnostic sensitivity.

Urologists at the Beijing Institute of Genomics (Beijing, China) and their colleagues assessed copy number alterations (CNAs) by shallow genome-wide sequencing of urinary cfDNA in 95 cancer-free individuals and 65 patients with UC, 58 with kidney cancer, and 45 with prostate cancer. They used a support vector machine to develop a diagnostic classifier based on CNA profiles to detect UC (UCdetector). A Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) was used to profile the length distribution of cfDNA isolated from the UC patients.

The model was further validated in an independent cohort (52 patients). Genome sequencing data of tumor specimens from 90 upper tract urothelial cancers (UTUCs) and CNA data for 410 urothelial carcinomas of bladder (UCBs) from The Cancer Genome Atlas were used to validate the classifier. Genome sequencing data for urine sediment from 32 patients with UC were compared with cfDNA. To monitor the treatment efficacy, the team collected cfDNA from seven post-treatment patients.

The investigators reported that urinary cfDNA was a more sensitive alternative to urinary sediment. The UCdetector could detect UC at a median clinical sensitivity of 86.5% and specificity of 94.7%. UCdetector performed well in an independent validation data set. Notably, the CNA features selected by UCdetector were specific markers for both UTUC and UCB. Moreover, CNA changes in cfDNA were consistent with the treatment effects. Meanwhile, the same strategy could localize genitourinary cancers to tissue of origin in 70.1% of patients.

The authors concluded that their findings underscore the potential utility of urinary cfDNA CNA profiles as a basis for non-invasive UC detection and surveillance. The study was published in the December 2019 issue of the journal Clinical Chemistry.

Related Links:
Beijing Institute of Genomics
Agilent Technologies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more