We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Hematology Analyzer Screens for Malaria in Clinical Setting

By LabMedica International staff writers
Posted on 14 Aug 2019
Print article
Image: The BC-6800 benchtop automatic hematology analyzer (Photo courtesy of Mindray).
Image: The BC-6800 benchtop automatic hematology analyzer (Photo courtesy of Mindray).
Malaria is a vector-borne infectious disease that continues to have high morbidity and mortality globally. Diagnosis based only on clinical symptoms has very low specificity as there is no combination of symptoms that reliably distinguishes malaria from other causes of fever or influenza.

Light microscopy, malaria nucleic acid amplification (PCR) test and malaria rapid diagnostic tests (RDTs) are used for parasitological diagnosis of malaria. Malaria PCR is not commonly used due to its high cost; RDTs are now more common, but not yet the regular test in non-endemic areas and microscopic examination of stained blood films remains the standard.

Clinical Laboratory Scientists from the Chinese People’s Liberation Army General Hospital (Beijing, China) collected a total of 181 samples, including 117 malaria-infected samples collected from Yunnan, China, and 64 samples from healthy controls. Microscopy examination was conducted as reference when stained thick blood film revealed the presence of malaria parasites identified as Plasmodium vivax and P. falciparum.

The team examined all blood samples using both light microscopy and the BC-6800 hematology analyzer. The BC-6800 hematology analyzer used sheath flow impedance, laser scatter and SF Cube analysis technology. In the BC-6800 differentiating (DIFF) channel, the fluorescent staining technology was adopted after the sample was mixed with DIFF lyse. For samples infected with malaria, RBC and white blood cell (WBC) sub-populations were differentiated by their size and complexity using lysing. The DIFF channel differentiates the sub-populations, including lymphocytes, monocytes, neutrophils, Plasmodium-infected RBC, and eosinophils, as well as identifies and flags abnormal cells such as immature granulocytes, abnormal lymphocytes and blast cells.

The BC-6800 hematology analyzer provides a dedicated flag ‘Infected RBC’ (InR) and the number of InR (InR#)/the permillage of InR (InR‰) in routine blood testing as a screening tool for malaria in endemic areas. The authors reported that the sensitivity of InR‰ generated by the BC-6800 for P. vivax and P. falciparum was 88.3% and 24.1%, respectively; specificity of InR‰ for malaria parasites was 84.3% and 84.3%, respectively; positive predictive value and negative predictive value was 89.4% and 82.7% for P. vivax, and 52.8% and 60.3% for P. falciparum. There was a strong correlation between the change in the differential WBCs and InR‰. There was also a significant correlation between parasitaemia and InR# in P. vivax-infected samples.

The authors concluded that their findings suggest that the flag ‘InR’ and the parameters ‘InR#/InR‰’ provided by the BC-6800 hematology analyzer could be used in malaria-endemic zones, ‘Infected RBC’ flag could serve as a rapid decision support tool when screening for malaria. The study was published on July 31, 2019, in the Malaria Journal.

Related Links:
Chinese People’s Liberation Army General Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more