We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Urine Test Used to Individualize Bladder Cancer Treatment

By LabMedica International staff writers
Posted on 08 Aug 2019
Print article
Image: A diagram of the workflow of the conditional reprogramming (CR) method for collection of urine and tissue samples and establishment of primary bladder cancer cell cultures (Photo courtesy of Fudan University).
Image: A diagram of the workflow of the conditional reprogramming (CR) method for collection of urine and tissue samples and establishment of primary bladder cancer cell cultures (Photo courtesy of Fudan University).
Bladder cancer is the most common urologic cancer in China and is in the top 10 most common cause of cancer death in the USA, leading to approximately 17,000 deaths in 2018.

Currently no method is available to predict which patients will respond to therapy and, apart from new and limited use of immunotherapy, treatment regimens for bladder cancer have not improved and survival rates have not increased in the last 30 years.

A large team of investigators from Georgetown University Medical Center (Washington, DC, USA) and Fudan University (Shanghai, China) have devised a very promising non-invasive and individualized technique for detecting and treating bladder cancer. The scientists adapted a conditional reprogramming (CR) technique to explore the possibility of establishing bladder cancer cells from patients’ tumor tissues and urine samples and applied the cultures for whole exome sequencing (WES) and drug testing.

The team compared tumor biopsies from 70 patients with individual urine specimens and both processed through CR cultures (CRC). Primary cells isolated from urine and tumor samples both rapidly formed CRC and representative three-dimensional compact spheroids. The investigators reported that the overall success rate of culturing urine CRCs was 83.3% (50/60), specifically, high-grade bladder cancer was 85.4% (41/48) and low-grade bladder cancer was 75% (9/12). The analysis of the mutation ratio for both patient tissue and corresponding CRC confirmed that both single nucleotide variants and DNA insertions and deletions were retained during the culturing.

After determining that the urine colonies and tumor tissue samples had matching molecular characteristics and genetic alterations, the scientists tested urine-based CRC cancer cells with 64 clinical oncology drugs. They found that overall the urine-based cancer cells were resistant to more than half of the drugs and they discovered that many of the urine cancer cells were highly sensitive to one of the drugs, bortezomib, which is currently being tested for a different GU tumor, urothelial cancer.

Shuai Jiang, MD, a urologist and the lead author of the study, said, “We also identified some mutations not identified in the original tumor biopsies, suggesting that the urine cell cultures better reflect overall tumor diversity than a single biopsy. The CRC technique may also expand our understanding of how low frequency mutations help lead to bladder cancer development and progression. Overall, CRC cultures may identify new actionable drug targets and help explain why this cancer is so often resistant to treatment.” The study was published on July 25, 2019, in the journal Protein & Cell.

Related Links:
Georgetown University Medical Center
Fudan University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more