We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Automated Hematology Analyzer Assessed for Malaria Diagnosis

By LabMedica International staff writers
Posted on 11 Jun 2019
Print article
Image: The XN-30 automated hematology analyzer that has an automatic measurement functions for red blood cells infected by malaria parasites (Photo courtesy of Sysmex).
Image: The XN-30 automated hematology analyzer that has an automatic measurement functions for red blood cells infected by malaria parasites (Photo courtesy of Sysmex).
Malaria remains a major cause of morbidity and mortality around the world. Sub-Saharan Africa is most affected with Plasmodium falciparum accounting for 99% of estimated cases. Timely and accurate diagnosis of malaria is essential for disease management and control.

Thin and thick blood smear microscopy and malaria rapid diagnostic tests (RDTs) are standard malaria diagnostics in endemic areas. RDTs have significantly improved the use of diagnostics for malaria diagnosis, accounting for 74% of diagnostic tests performed among suspected cases in 2015. Both techniques provide challenges in clinical practice.

An international team of scientists led by Radboud University Medical Centre (Nijmegen, the Netherlands) performed a prospective, double-blinded, phase 3 diagnostic accuracy study on 16 healthy, malaria-naive controlled human malaria infection (CHMI) participants were challenged with five P. falciparum-infected mosquitoes and a diagnostic accuracy study in Burkina Faso. Blood was sampled daily for XN-30, blood smear microscopy, and malaria quantitative polymerase chain reaction (qPCR). The XN-30 is a novel automated hematology analyzer and malaria diagnostic that directly detects and quantifies Plasmodium parasites (falciparum and non-falciparum) in blood using violet laser technology.

The team reported that all CHMI participants became parasitemic by qPCR and XN-30 with a strong correlation for parasite density. The XN-30 accurately monitored treatment and allowed detection of recrudescence. Out of 908 patients in the accuracy study, 241 had microscopic malaria (density 24–491,802 parasites/μL). The sensitivity and specificity of XN-30 compared to microscopy were 98.7% and 99.4%. Results were corrected for qPCR-confirmed sub-microscopic cases. Three microscopy-confirmed cases were not detected by XN-30. However, XN-30 detected 19/134 (14.2%) qPCR-confirmed cases missed by microscopy.

The authors concluded that the XN-30 holds promise as a rapid and sensitive test for malaria detection and subsequent treatment monitoring. Since XN-30 provides a complete blood count (CBC) with each analysis, it provides critical information for malaria management at a price comparable to CBC. Its higher sensitivity compared to microscopy in low-density parasitaemia also makes it a useful tool for mass screening in control programs. The study was published on May 31, 2019, in the journal BMC Medicine.

Related Links:
Radboud University Medical Centre

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more