We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microscope-Based AI Identifies Bacteria Accurately

By LabMedica International staff writers
Posted on 26 Dec 2017
Print article
Image: The MetaFer Slide Scanning and Imaging platform with a Zeiss microscope (Photo courtesy of MetaSystems Group).
Image: The MetaFer Slide Scanning and Imaging platform with a Zeiss microscope (Photo courtesy of MetaSystems Group).
Microscopes enhanced with artificial intelligence (AI) could help clinical microbiologists diagnose potentially deadly blood infections and improve patients' odds of survival.

Scientists have demonstrated that an automated AI-enhanced microscope system is "highly adept" at identifying images of bacteria quickly and accurately. The automated system could help alleviate the current lack of highly trained microbiologists, expected to worsen as 20% of technologists reach retirement age in the next five years.

Scientists working with the Department of Pathology, Beth Israel Deaconess Medical Center, (Boston, MA, USA) used an automated microscope designed to collect high-resolution image data from microscopic slides. In this case, blood samples taken from patients with suspected bloodstream infections were incubated to increase bacterial numbers. Then, slides were prepared by placing a drop of blood on a glass slide and stained with dye to make the bacterial cell structures more visible.

The investigators then trained a convolutional neural network (CNN), a class of artificial intelligence modeled on the mammalian visual cortex and used to analyze visual data, to categorize bacteria based on their shape and distribution. These characteristics were selected to represent bacteria that most often cause bloodstream infections; the rod-shaped bacteria including Escherichia coli; the round clusters of Staphylococcus species; and the pairs or chains of Streptococcus species. All slides were imaged without coverslips using a MetaFer Slide Scanning and Imaging platform with a 140-slide capacity automated slide loader equipped with a 40× magnification Plan-Neofluar objective.

To train it, the scientists fed their unschooled neural network more than 25,000 images from blood samples prepared during routine clinical workups. By cropping these images, in which the bacteria had already been identified by human clinical microbiologists, the scientists generated more than 100,000 training images. The machine intelligence learned how to sort the images into the three categories of bacteria (rod-shaped, round clusters, and round chains or pairs), ultimately achieving nearly 95% accuracy.

The team challenged the algorithm to sort new images from 189 slides without human intervention. Overall, the algorithm achieved more than 93% accuracy in all three categories. Sensitivity/specificity was 98.4/75.0% for Gram-positive cocci in chains/pairs; 93.2/97.2% for Gram-positive cocci in clusters; and 96.3/98.1% for Gram-negative rods. The study was published on November 29, 2017, in the Journal of Clinical Microbiology.

Related Links:
Beth Israel Deaconess Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more