LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Researchers Develop Metabolomics Approach for Diagnosing MS

By LabMedica International staff writers
Posted on 25 Dec 2017
Print article
Image: Researchers have developed a blood sample detection method for MS (Photo courtesy of the University of Huddersfield).
Image: Researchers have developed a blood sample detection method for MS (Photo courtesy of the University of Huddersfield).
A team of British researchers has developed a metabolomics approach for diagnosing multiple sclerosis (MS) by testing blood samples.

Metabolomics is the analysis of low molecular weight biological molecules that result from metabolic processes. Disease states result in changes in metabolism in cells and systems that affect the profile of metabolites. Analysis of metabolite profiles in disease conditions and comparison with the profiles of non-diseased individuals can be used in diagnosis.

Investigators at the University of Huddersfield (United Kingdom) sought to identify differences in the metabolomic profiles in the serum of patients with multiple sclerosis (MS), those with neuropathic pain (NP), and those with both MS and NP compared with controls and to identify potential biomarkers of each disease state.

For this study, metabolomic profiling was performed using ultra-high-performance liquid chromatography coupled to mass spectrometry. Data analysis involved parametric methods, principal component analysis, and discriminating filter analysis to determine the differences between disease and control serum samples.

Results of the metabolomics analysis identified sphingosine and dihydrosphingosine as significant biomarkers. These substances were determined to be present in significantly lower concentrations in blood samples from multiple sclerosis patients than from controls. Sphingosine and dihydrosphingosine had been previously found to be at lower concentrations in the brain tissue of patients with multiple sclerosis. The detection of these sphingolipids in blood plasma will allow the non-invasive monitoring of these and related compounds.

The multiple sclerosis metabolomics study was published in the September 25, 2017, online edition of the journal Analytical Methods.

Related Links:
University of Huddersfield

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more