We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarker Panel Enables Diagnosis of Mild Concussions

By LabMedica International staff writers
Posted on 06 Nov 2017
Print article
Image: A fluorescence micrograph of a human astrocyte (Photo courtesy of Wikimedia Commons).
Image: A fluorescence micrograph of a human astrocyte (Photo courtesy of Wikimedia Commons).
A panel comprising proteins released into the blood by damaged brain astrocytes was shown to be diagnostic for mild concussions, even those that could not be detected by CAT scan.

Concussion, also referred to as mild traumatic brain injury (TBI), is an expanding public health problem with pathophysiology that is difficult to diagnose and thus treat. TBI biomarkers should assess patients across severities and reveal pathophysiology, but currently, their kinetics and specificity are unclear. No single ideal TBI biomarker exists.

Following a search for TBI biomarkers, investigators at the University of California, Los Angeles (USA) reported that they had identified new candidates by selecting trauma-released, astrocyte-enriched proteins including the enzyme aldolase C (ALDOC), its 38 kiloDalton breakdown product (BDP), brain lipid binding protein (BLBP), astrocytic phosphoprotein (PEA15), glutamine synthetase (GS) and new 18-25 kiloDalton GFAP (Glial fibrillary acidic protein)-BDPs.

The investigators reported that levels of these proteins increased over four orders of magnitude in severe TBI cerebrospinal fluid (CSF). First post-injury week, ALDOC levels were markedly high and stable. Short-lived BLBP and PEA15 related to injury progression. ALDOC, BLBP, and PEA15 appeared soon after the injury and were robust in the blood of severe and mild TBI patients; 25 kiloDalton GFAP-BDP appeared overnight after TBI and was rarely present after mild TBI.

Using a human culture trauma model, the investigators analyzed biomarker kinetics. They found that disrupted astrocytes released ALDOC, BLBP, and PEA15 acutely. Delayed cell death corresponded with GFAP release and proteolysis into small GFAP-BDPs.

The investigators suggested that this biomarker panel would make it possible for the first time to diagnose mild traumatic brain injury and to monitor brain tissue damage as it occurs.

Related Links:
University of California, Los Angeles

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more