We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarker Predicts Cancer Aggressiveness and Drug Susceptibility

By LabMedica International staff writers
Posted on 23 Oct 2017
Print article
Image: A photomicrograph showing histopathological image of cerebral glioblastoma (Photo courtesy of Wikimedia Commons).
Image: A photomicrograph showing histopathological image of cerebral glioblastoma (Photo courtesy of Wikimedia Commons).
Researchers have identified a protein required by some forms of brain cancer (glioblastoma multiforme, GBM) that can be used as a predictive marker for aggressiveness and effective drug response.

Glioblastoma is the most common primary tumor of the central nervous system and is almost always fatal. The aggressive invasion of glioblastoma cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Treatment of glioblastoma usually comprises surgical removal of the tumor followed by radiation treatment and chemotherapy using the drug temozolomide (TMZ). However, the penetration of the tumor into adjacent brain tissue prevents the surgical removal of all tumor cells, which usually develop resistance to TMZ.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) found that the mitotic spindle checkpoint protein BUB1B (serine/threonine-protein kinase BUB1 beta) may serve as a predictive marker for glioblastoma aggressiveness and effective drug response. BUB1B is a kinase involved in spindle checkpoint function and chromosome segregation. The protein has been localized to the kinetochore and plays a role in the inhibition of the anaphase-promoting complex/cyclosome (APC/C), delaying the onset of anaphase and ensuring proper chromosome segregation. Impaired spindle checkpoint function has been found in many forms of cancer.

The investigators used gene expression data from GBM stem-like cells, astrocytes, and neural progenitor cells that were sensitive or resistant to BUB1B inhibition to create a computational framework to predict sensitivity to BUB1B inhibition. Applying this framework to tumor expression data from patients, they stratified tumors into BUB1B-sensitive (BUB1BS) or BUB1B-resistant (BUB1BR) subtypes. Through this effort, they found that BUB1BS patients had a significantly worse prognosis regardless of tumor development subtype (i.e., classical, mesenchymal, neural, proneural). Functional genomic profiling of BUB1BR versus BUB1BS isolates revealed a differential reliance of genes enriched in the BUB1BS classifier, including those involved in mitotic cell cycle, microtubule organization, and chromosome segregation.

By comparing drug sensitivity profiles, the investigators predicted that BUB1BS cells would be more sensitive to type I and II topoisomerase inhibitors, Raf inhibitors, and other drugs, and experimentally validated some of these predictions.

“It was truly remarkable to see our predictive model yield a new set of molecular subtypes, which appear to be far more indicative of prognosis and therapeutic response than existing subtypes,” said senior author Dr. Jun Zhu, professor of genetics and genomic sciences at Mount Sinai Medical School. “For patients who receive the grim diagnosis of glioblastoma, this signals new hope for tailored treatment more likely to be effective against their cancer.”

The study was published in the October 15, 2017, issue of the journal Cancer Research.

Related Links:
Mount Sinai School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more