LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Low Cost Method Examines Single Leukemic Cells

By LabMedica International staff writers
Posted on 28 Oct 2016
Print article
Image: The Metafer Vslide scanning system connected to a Zeiss microscope (Photo courtesy of MetaSystems).
Image: The Metafer Vslide scanning system connected to a Zeiss microscope (Photo courtesy of MetaSystems).
Leukemia is a disease in which each cell can exhibit different genetic traits, and a cheap way has been developed to examine the individual cells and this breakthrough could transform leukemia treatment.

Cells are packed with genetic information that can be used to improve treatment of diseases such as cancer, but the ribonucleic acid (RNA) sequencing methods typically used today have one limitation in that they do not identify in which cells the genetic activity is taking place.

Scientists at the KTH Royal Institute of Technology (Stockholm, Sweden) and their colleagues developed a new method they used to examine individual tumor cells in patients with chronic lymphocytic leukemia (CLL), an important advance considering the team found the leukemia tumors to be comprised of cells with entirely different gene expressions. They used cryopreserved peripheral blood mononuclear samples derived from three CLL patients. All cases were diagnosed and classified according to recently revised iwCLL criteria44 with a typical CLL immunophenotype.

Individual cells were sorted on a specially made glass surface and using analysis of RNA molecules with next-generation sequencing, from which one can tell which genes are active. The spatial information on the glass surface tells which cell a specific RNA molecule is to be found in. The FACS sorter utilized for analyses and single-cell sorting was a BD Influx. Images of sorted and stained cells on barcoded microarrays were recorded using a Metafer Vslide scanning system installed on an Axio Imager Z2 LSM700 microscope.

The method enabled massive microarray-based barcoding of expression patterns in single cells, termed MASC-seq. This technology enabled both imaging and high-throughput single-cell analysis, characterizing thousands of single-cell transcriptomes per day at a low cost of USD 0.13/cell, which is two orders of magnitude less than commercially available systems. The novel approach provides data in a rapid and simple way. Therefore, MASC-seq has the potential to accelerate the study of subtle clonal dynamics and help provide critical insights into disease development and other biological processes.

Joakim Lundeberg, PhD, a professor of Gene Technology and senior author of the study, said, “We found that CLL cells do not consist of a single cell type, but of a number of sub-clones that exhibit entirely different gene expression. With this new, highly cost-effective technology, we can now get a whole new view of this complexity within the blood cancer sample. Molecular resolution of single cells is likely to become a more widely-used therapy option.” The study was published on October 14, 2016, in the journal Nature Communications.

Related Links:
KTH Royal Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more