LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Faulty Genetic Instructions Drive Deadly Leukemia in Adults

By LabMedica International staff writers
Posted on 06 Jul 2016
Print article
Image: A photomicrograph of a blood smear from a patient with acute myeloid leukemia, with very large, immature myeloblasts with many nucleoli (Photo courtesy of the CDC).
Image: A photomicrograph of a blood smear from a patient with acute myeloid leukemia, with very large, immature myeloblasts with many nucleoli (Photo courtesy of the CDC).
Acute myeloid leukemia is one of the most common acute leukemia or blood cancer types in adults, and involves over-production of immature blood cells that then crowd out normal, healthy cells.

It is estimated there are nearly 20,000 new cases diagnosed and more than 10,000 deaths in the USA each year and studies have found that just close to 23% of people with the disease live five years once diagnosed.

Scientists at the Lineberger Comprehensive Cancer Center (Chapel Hill, NC, USA) and their colleagues have discovered how a set of faulty genetic instructions keep blood stem cells from maturing, a finding that further explains the development of acute myeloid leukemia (AML). They reveal how a mutation in the gene DNMT3A, which has been found in approximately 20% to 30% of cases of AML, gives normal cells faulty genetic instructions that contribute to the development of cancerous cells.

They also found that while the DNMT3A mutation is required for acute leukemia development, the mutation itself is not sufficient to cause cancer alone. Instead, they found that the mutation cooperates with another genetic defect in a gene called rat sarcoma (RAS) to drive cancer. They found AML cells with the DNMT3A mutation were sensitive to specific drug inhibitors of DOT1-Like Histone H3K79 Methyltransferase (DOT1L), a cellular enzyme involved in modulation of gene expression activities. As DOT1L inhibitors are currently under clinical evaluation, this translational finding suggests a potential personalized strategy for treating the human AML carrying DNMT3A mutation.

Rui Lu, PhD, the lead author of the study, said, “We found the RAS mutation stimulates these immature blood cells to be hyper-proliferate, however, these cells cannot maintain their stem cell properties, while the DNMT3A mutation itself does not have hyper-proliferative effects, but does promote stemness properties and generates leukemia stem/initiating cells together with the RAS mutation.” The study was published on June 23, 2016, in the journal Cancer Cell.

Related Links:
Lineberger Comprehensive Cancer Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more