We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Key Genetic Error Found in Blood Cancer Groups

By LabMedica International staff writers
Posted on 12 Jan 2012
Print article
A critical genetic mutation has been revealed in some patients within a family of blood cancers that can progress to a fatal form of leukemia.

This family of blood cancers is known as myelodysplastic syndromes and are a difficult-to-treat type of blood disease that occur when blood cells in the bone marrow do not mature properly.

A scientific team at the Washington University School of Medicine (St. Louis, MO, USA) discovered the mutation in a gene known as small nuclear ribonucleic acid (RNA) auxiliary factor 1(U2AF1). They sequenced the entire genome of a 65-year old man with myelodysplastic syndrome that had progressed to leukemia and compared it with the genome of his tumor cells.

After identifying the U2AF1 mutation in three patients through whole-genome sequencing, the investigators scoured the gene for the mutation in another 150 patients with myelodysplastic syndromes. They identified the mutation in 13, or nearly 9% of the patients. The mutations were acquired during development of myelodysplastic syndromes because they were not present in normal cells obtained from each patient. Patients were almost three times as likely to develop leukemia if they had a mutation in the U2AF1 gene. The disorder progressed to leukemia in 15.2% of patients with the mutation, compared with 5.8% of those without the genetic anomaly.

Normally, the U2AF1 gene makes a protein involved in splicing RNA, a sister molecule of DNA that carries the instructions for building proteins. Splicing brings together different sections of RNA necessary to make a protein and discards those sections that are not needed. The mutated version of the gene still produces a protein, but its splicing activity is altered, which may be important for the development of some cancers.

Timothy Graubert, MD, an associate professor of medicine and senior author of the study said, "A mutation in any one of these eight genes occurs in up to 50% of patients with myelodysplastic syndromes. Because these changes are so common, we think there are likely to be implications for improving the diagnosis of the disorder and finding new therapeutic options." Myelodysplastic syndromes are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia. About 28,000 Americans are diagnosed with the disorder each year, most of them over the age of 60. The study was published on December 11, 2011, in the journal Nature Genetics.

Related Links:
Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Automatic Nucleic Acid Extractor
GeneRotex 24

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more