Harmless Bacteria Thrive in Patients with Inflammatory Bowel Disease
|
By LabMedica International staff writers Posted on 26 May 2015 |

Image: The CARY 50 BIO UV-Visible Spectrophotometer (Photo courtesy of Agilent Technologies).
The survival and proliferation of usually harmless Escherichia coli in the gut of inflammatory bowel disease patients may now be better understood, as fundamental mechanism through which the bacteria can thrive during flare-ups has been defined.
Some strains of E. coli normally live in the intestines of humans, and are important for a healthy digestive tract, but for people who suffer from inflammatory bowel diseases (IBD), these innocuous strains may proliferate during a flare-up and further contribute to disease and discomfort.
Scientists at Pennsylvania State University (University Park, PA, USA) and their colleagues studied the interactions between enterobactin, myeloperoxidase and lipocalin 2 and how they regulate E. coli in the intestine. Enterobactin (Ent) is an iron-loving chemical secreted by E. coli that takes iron from host proteins in the body and aids the proliferation of E. coli. Myeloperoxidase (MPO) is an antibacterial protein that white blood cells produce to fight bacteria, however Ent inhibits MPO from doing its job. Lipocalin 2 (Lcn2) is another protein, also produced by white blood cells, that gathers up Ent so that bacteria fail to obtain a sufficient amount of iron for their survival.
Spectral analysis of lactoperoxidase (LPO) during the oxidation of Ent, 2,3-dihydroxybenzoic acid (DHBA) and 4-aminobenzoic hydrazide (ABAH) was recorded at 412 nm using CARY50BIO UV-Visible Spectrophotometer (Agilent Technologies; Santa Clara, CA, USA). By using various techniques the team found that Lcn2 can counter the effects of Ent on MPO. They were able to define a new defense mechanism used by E. coli residing in a human or animal host, the inhibition of MPO by Ent. These findings define a fundamental mechanism by which E. coli surpasses the host innate immune responses during inflammatory gut diseases and gains a distinct survival advantage.
Matam Vijay-Kumar, PhD, an assistant professor of nutritional sciences and medicine and lead author of the study said, “Several types of inflammatory bowel disease are characterized by expansion of the opportunistic E. coli in the gut. However, the mechanisms by which E. coli can thwart the hostile host innate immune system are poorly understood. Identifying these mechanisms will help to reduce the E. coli burden in the inflamed gut and prevent chronic extra-intestinal diseases. We have to find a way to identify the drugs which can inhibit or degrade secreted enterobactin. Alternatively, since MPO is known to be pro-inflammatory not only in IBD but also in other inflammatory diseases, it may be possible to develop enterobactin-based drugs to alleviate inflammatory pathways.” The study was published on May 12, 2015, in the journal Nature Communications.
Related Links:
Pennsylvania State University
Agilent Technologies
Some strains of E. coli normally live in the intestines of humans, and are important for a healthy digestive tract, but for people who suffer from inflammatory bowel diseases (IBD), these innocuous strains may proliferate during a flare-up and further contribute to disease and discomfort.
Scientists at Pennsylvania State University (University Park, PA, USA) and their colleagues studied the interactions between enterobactin, myeloperoxidase and lipocalin 2 and how they regulate E. coli in the intestine. Enterobactin (Ent) is an iron-loving chemical secreted by E. coli that takes iron from host proteins in the body and aids the proliferation of E. coli. Myeloperoxidase (MPO) is an antibacterial protein that white blood cells produce to fight bacteria, however Ent inhibits MPO from doing its job. Lipocalin 2 (Lcn2) is another protein, also produced by white blood cells, that gathers up Ent so that bacteria fail to obtain a sufficient amount of iron for their survival.
Spectral analysis of lactoperoxidase (LPO) during the oxidation of Ent, 2,3-dihydroxybenzoic acid (DHBA) and 4-aminobenzoic hydrazide (ABAH) was recorded at 412 nm using CARY50BIO UV-Visible Spectrophotometer (Agilent Technologies; Santa Clara, CA, USA). By using various techniques the team found that Lcn2 can counter the effects of Ent on MPO. They were able to define a new defense mechanism used by E. coli residing in a human or animal host, the inhibition of MPO by Ent. These findings define a fundamental mechanism by which E. coli surpasses the host innate immune responses during inflammatory gut diseases and gains a distinct survival advantage.
Matam Vijay-Kumar, PhD, an assistant professor of nutritional sciences and medicine and lead author of the study said, “Several types of inflammatory bowel disease are characterized by expansion of the opportunistic E. coli in the gut. However, the mechanisms by which E. coli can thwart the hostile host innate immune system are poorly understood. Identifying these mechanisms will help to reduce the E. coli burden in the inflamed gut and prevent chronic extra-intestinal diseases. We have to find a way to identify the drugs which can inhibit or degrade secreted enterobactin. Alternatively, since MPO is known to be pro-inflammatory not only in IBD but also in other inflammatory diseases, it may be possible to develop enterobactin-based drugs to alleviate inflammatory pathways.” The study was published on May 12, 2015, in the journal Nature Communications.
Related Links:
Pennsylvania State University
Agilent Technologies
Latest Clinical Chem. News
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
- Prostate Cancer Markers Based on Chemical Make-Up of Calcifications to Speed Up Detection
- Breath Test Could Help Detect Blood Cancers
- ML-Powered Gas Sensors to Detect Pathogens and AMR at POC
- Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation
- Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs

- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
- Simple Urine Test Could Detect Multiple Cancers at Early Stage
- Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Pneumonia continues to be one of the leading causes of death in low- and middle-income countries, where limited access to advanced laboratory infrastructure hampers early and accurate diagnosis.... Read more
Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
Early diagnosis of Parkinson’s disease remains one of the greatest challenges in neurology. The condition, which affects nearly 12 million people globally, is typically identified only after significant... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








