We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Inherited Immune Deficiency Detected In Newborns

By LabMedica International staff writers
Posted on 24 Aug 2014
Print article
A study suggests that early diagnosis of severe combined immunodeficiency leads to high survival rates.

The newborn screening test for severe combined immunodeficiency (SCID) reliably identifies infants with the life-threatening inherited condition, leading to prompt treatment and high survival rates, according to a new study. Researchers led by Jennifer Puck, MD, of the University of California (San Francisco, CA, USA) found that SCID affects approximately 1 in 58,000 newborns, indicating that the disorder is less rare than previously thought. The study was funded in part by NIH's National Institute of Allergy and Infectious Diseases (NIAID; Bethesda, MD, USA) and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). It appears in the August 20, 2014, issue of the Journal of the American Medical Association.

SCID is a group of disorders caused by defects in genes involved in the development and function of T cells and other infection-fighting immune cells. Infants with SCID are highly susceptible to life-threatening infections. SCID is fatal, usually within the first year or two of life, unless affected infants are given immune-restoring treatments such as transplants of blood-forming stem cells or gene therapy. More than 80 % of affected infants do not have a family history of the condition.

The SCID newborn screening test that was originally developed at NIH and measures T cell receptor excision circles (TRECs), a byproduct of T-cell development. Infants with SCID have few or no T cells, regardless of the underlying genetic defect. Absence of TRECs may indicate SCID. It might also help doctors identify infants with non-SCID T-cell deficiencies. SCID was added in 2010 to the US Department of Health and Human Services' Recommended Uniform Screening Panel. But the TREC test has not yet been adopted universally. Nearly half of states conduct newborn screening for SCID, and the test is performed for almost two thirds of infants born across the country.

The current study evaluated data from more than 3 million newborns gathered by screening programs in 10 states and the Navajo Nation, which spans parts of Arizona, New Mexico, and Utah. The Navajo have a higher than average risk of SCID, due to certain genetic mutations. Overall, screening detected 52 newborns with SCID, equivalent to 1 in 58,000 infants. All infants with abnormal TREC results underwent further diagnostic testing to confirm SCID. The researchers did not identify any cases of SCID that were missed by TREC screening. Previous estimates, based on limited data, suggested that SCID was less prevalent, affecting only 1 in 100,000 babies.

Early diagnosis allows physicians to treat SCID infants promptly, before infections become overwhelming. Of the 52 SCID infants in the current study, 49 received immune-restoring therapies such as stem cell transplants, enzyme replacement therapy or gene therapy. Three infants died before treatment was given. Four died after receiving transplants, while the other 45 treated infants (92%) survived.

Tiina Urv, PhD, a program director in the Intellectual and Developmental Disabilities Branch at NICHD said, "We have made great strides in our knowledge of SCID and other related immunodeficiencies in a relatively short period of time, thanks to newborn screening. Such collaborative research efforts could serve as a model for other disorders."

Related Links:

University of California, San Francisco
NIAID
NICHD


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more