Genomic Biomarkers Assess Treatment Prognosis in Blood Cancers
|
By LabMedica International staff writers Posted on 04 Aug 2014 |

Image: The GeneRead DNAseq Targeted Panels V2 kit (Photo courtesy of Qiagen).

B Image: Bone marrow aspirate smear from a patient with myelodysplastic syndromes (Photo courtesy of Dr. Robert P Hasserjian, MD).
The biomarker gene, splicing factor 3B subunit 1(SF3B1), is believed to play a critical role in the prognosis of patients with myelodysplastic syndromes (MDS), a group of hematological cancers in which bone marrow does not produce enough healthy blood cells.
Mutations of this gene, which is an important component of the spliceosome machinery, indicate a more favorable disease progression for patients than the "wild-type" gene, so testing for these gene variants could potentially provide important guidance for treatment based on a personalized healthcare approach to MDS.
QIAGEN N.V. (Hilden, Germany) announced it has acquired an exclusive global license to the biomarker SF3B1 from the University of Tokyo (Japan). QIAGEN licensed the SF3B1 biomarker in an ongoing expansion of the oncohematology offering for clinical research and diagnostics. Three additional spliceosome biomarkers implicated in various blood cancers and targeting variants in the U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1,U2AF35), the zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2 (ZRSR2) and the serine/arginine-rich splicing factor 2 (SFRS2) genes are also part of the license agreement.
Those genes are included in QIAGEN's GeneRead DNAseq Leukemia V2 gene panel for next-generation sequencing (NGS), which has been launched earlier this month together with 13 other new cancer gene panels that are compatible with any NGS sequencer and customizable to include other genes or gene regions of clinical or biological interest. The GeneRead technology provides the most cost-effective and time-efficient approach for target enrichment of assay panels for NGS. The panels use as little as 10 nanograms of starting DNA material per pool, require only three hours to enrich for targets and substantially reduce the time to go from isolated DNA sample to sequencing-ready libraries. They are compatible for use with formalin-fixed, paraffin-embedded (FFPE) samples, do not require specialized instruments, and achieve industry leading coverage of greater than 96% of coding regions, a specificity greater than 90% of reads on target and a greater than 90% uniformity of bases covered by at least 20% of the mean coverage depth.
Vincent Fert, MSc, QIAGEN's Personalized Healthcare Program Leader, said, “Building on a broad portfolio of molecular diagnostics for blood cancers, QIAGEN continues to partner with clinical researchers at pharmaceutical companies and academic centers to extend the benefits of personalized healthcare. Because several Pharma companies are developing potential anticancer drugs targeting the SF3B1 gene, this biomarker also holds potential for co-development as a companion diagnostic.”
Related Links:
QIAGEN N.V.
University of Tokyo
Mutations of this gene, which is an important component of the spliceosome machinery, indicate a more favorable disease progression for patients than the "wild-type" gene, so testing for these gene variants could potentially provide important guidance for treatment based on a personalized healthcare approach to MDS.
QIAGEN N.V. (Hilden, Germany) announced it has acquired an exclusive global license to the biomarker SF3B1 from the University of Tokyo (Japan). QIAGEN licensed the SF3B1 biomarker in an ongoing expansion of the oncohematology offering for clinical research and diagnostics. Three additional spliceosome biomarkers implicated in various blood cancers and targeting variants in the U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1,U2AF35), the zinc finger (CCCH type), RNA-binding motif and serine/arginine rich 2 (ZRSR2) and the serine/arginine-rich splicing factor 2 (SFRS2) genes are also part of the license agreement.
Those genes are included in QIAGEN's GeneRead DNAseq Leukemia V2 gene panel for next-generation sequencing (NGS), which has been launched earlier this month together with 13 other new cancer gene panels that are compatible with any NGS sequencer and customizable to include other genes or gene regions of clinical or biological interest. The GeneRead technology provides the most cost-effective and time-efficient approach for target enrichment of assay panels for NGS. The panels use as little as 10 nanograms of starting DNA material per pool, require only three hours to enrich for targets and substantially reduce the time to go from isolated DNA sample to sequencing-ready libraries. They are compatible for use with formalin-fixed, paraffin-embedded (FFPE) samples, do not require specialized instruments, and achieve industry leading coverage of greater than 96% of coding regions, a specificity greater than 90% of reads on target and a greater than 90% uniformity of bases covered by at least 20% of the mean coverage depth.
Vincent Fert, MSc, QIAGEN's Personalized Healthcare Program Leader, said, “Building on a broad portfolio of molecular diagnostics for blood cancers, QIAGEN continues to partner with clinical researchers at pharmaceutical companies and academic centers to extend the benefits of personalized healthcare. Because several Pharma companies are developing potential anticancer drugs targeting the SF3B1 gene, this biomarker also holds potential for co-development as a companion diagnostic.”
Related Links:
QIAGEN N.V.
University of Tokyo
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more







