Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients
Posted on 13 Nov 2024
Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly monitor the concentration of these drugs in their bodies. However, the current diagnostic technologies used in hospitals for this purpose face challenges in terms of both accuracy and time efficiency. The most widely used method, immunoassay, is prone to cross-reactions with similar drugs, which lowers diagnostic accuracy. While mass spectrometry, which ionizes samples using electrospray, offers greater accuracy, it is time-consuming and expensive, creating additional burdens for patients. To address these limitations, researchers have developed a novel diagnostic and treatment system based on nanomaterials for therapeutic drug monitoring (TDM) in epilepsy patients. This approach promises to significantly reduce the time and cost of current diagnostics while maintaining accuracy, ultimately easing the burden on patients managing their condition.
This innovative nanomaterial-based diagnostic method was developed by scientists at the Korea Research Institute of Standards and Science (KRISS, Daejeon, South Korea), in collaboration with domestic university hospitals. By incorporating a mixture of molybdenum ditelluride (MoTe2) and tungsten ditelluride (WTe2) nanosheets into the sample and ionizing it with a laser, the researchers were able to enhance both the speed and sensitivity of drug detection. When applied to samples from 120 epilepsy patients, the technology demonstrated over 99.9% reliability, while reducing the analysis time to just one-sixteenth of the original. Furthermore, the number of samples that could be analyzed in a single session increased more than tenfold, potentially cutting diagnostic costs by half.
Related Links:
KRISS