Electronic Device Detects Molecules Linked To Neurodegenerative Diseases

By LabMedica International staff writers
Posted on 09 Jun 2016
A biosensor has been developed and has proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer. The device is basically a single-layer organic nanometer-scale transistor on a glass slide.

The biosensor contains the reduced form of the peptide glutathione (GSH), which reacts in a specific way when it comes into contact with the enzyme glutathione S-transferase (GST), linked to Parkinson's, Alzheimer's and breast cancer, among other diseases. The GSH-GST reaction is detected by the transistor, which can be used for diagnostic purposes.

Image: A biosensor detects molecules linked to neurodegenerative diseases and cancer (Photo courtesy of University of Campinas).

Scientists at the University of Campinas (Brazil) have focused on the development of point-of-care devices by investigators in a range of knowledge areas, using functional materials to produce simple sensors and microfluidic systems for rapid diagnosis. The system can be adapted to detect other substances, such as molecules linked to different diseases and elements present in contaminated material, among other applications. This requires replacing the molecules in the sensor with others that react with the chemicals targeted by the test, which are known as analytes.

The team has developed a technique to make paper conductive and capable of transporting sensing data by impregnating cellulose fibers with polymers that have conductive properties. The technique is based on in situ synthesis of conductive polymers. For the polymers not to remain trapped on the surface of the paper, they have to be synthesized inside and between the pores of the cellulose fibers. This is done by gas-phase chemical polymerization: a liquid oxidant is infiltrated into the paper, which is then exposed to monomers in the gas phase. A monomer is a molecule of low molecular weight capable of reacting with identical or different molecules of low molecular weight to form a polymer.

The monomers evaporate under the paper and penetrate the pores of the fibers at the submicrometer scale. Inside the pores, they blend with the oxidant and begin the polymerization process right there, impregnating the entire material. The polymerized paper acquires the conductive properties of the polymers. This conductivity can be adjusted by manipulating the element embedded in the cellulose fibers, depending on the application for which the paper is designed. Thus, the device can be electrically conductive, allowing current to flow without significant losses, or semiconductive, interacting with specific molecules and functioning as a physical, chemical or electrochemical sensor.

Carlos Cesar Bof Bufon, PhD, the lead author of the study, said, “This is the first time organic transistor technology has been used in detecting the pair GSH-GST, which is important in diagnosing degenerative diseases, for example. The device can detect such molecules even when they're present at very low levels in the examined material, thanks to its nanometric sensitivity.”

Related Links:
University of Campinas


Latest Technology News