LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Microscopy Technique Tracks Moving Microbes

By LabMedica International staff writers
Posted on 11 Oct 2012
An innovative way to observe and track large numbers of rapidly moving objects under a microscope, capturing precise motion paths in three dimensions, has been developed.

The technique allows for the following of an unprecedented 24,000 rapidly moving cells over wide fields of view and through large sample volumes, recording each cell's path for as long as 20 seconds.

Scientists at the University of California (UCLA; Los Angeles, CA, USA) used offset beams of red and blue light to create holographic information that, when processed using sophisticated software, accurately reveal the paths of objects moving under a microscope. The y tracked several cohorts of more than 1,500 human male gamete cells over a relatively wide field of view of more than 17 square millimeters and large sample volume of up to 17 cubic millimeters over several seconds.


The technique, along with a novel software algorithm that the team developed to process observational data, revealed previously unknown statistical pathways for the cells. The scientists found that human male gamete cells travel in a series of twists and turns along a constantly changing path that occasionally follows a tight helix, a spiral that, 90% of the time, is in a clockwise or right-handed direction. Because only four to five percent of the cells in a given sample traveled in a helical path at any given time, microscopists would not have been able to observe the rare behavior without the new high-throughput microscopy technique.

The authors report reports observations of 24,000 cells over the duration of this study. Such a large number of observations provide a statistically significant dataset and a useful methodology for potentially studying a range of subjects, from the impact of pharmaceuticals and other substances on large numbers of cells, in real time, to fertility treatments and drug development. The same approach may also enable scientists to study quick-moving, single-celled microorganisms. The new lens-free holographic imaging technique could potentially reveal unknown elements of protozoan behavior and allow real-time testing of novel drug treatments to combat some of the most pathogenic forms of those organisms. The study was published on September 17, 2012, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

University of California, Los Angeles



Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
PlGF Test
Quidel Triage PlGF Test
New
DNA/RNA Extraction/Purification Kit
Nucleic Acid Extraction or Purification Kit

Latest Technology News

Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
11 Oct 2012  |   Technology

New Miniature Device to Transform Testing of Blood Cancer Treatments
11 Oct 2012  |   Technology

Biosensing Advancement to Enable Early Detection of Disease Biomarkers at POC
11 Oct 2012  |   Technology



PURITAN MEDICAL