We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

By LabMedica International staff writers
Posted on 15 Nov 2024

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology patients.

In a new study, scientists at the Institute of Science of Data and Artificial Intelligence (DATAI) at the University of Navarra (Pamplona, Spain) analyzed data from over 3,000 patients diagnosed with lung and bladder cancers. By employing machine learning models, the researchers discovered new genetic signatures unique to each stage of these cancers and created a system known as the "IFIT index" (Index of "Physical Immunity"). This system is aimed at personalizing therapies to enhance their effectiveness. The IFIT index measures a patient's immunological fitness, categorizing them based on their risk at various stages of the disease. This approach allows for predicting how well a patient will respond to treatment depending on the activity of their immune system in different stages of cancer treatment.


Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

The research, published in the Journal for ImmunoTherapy of Cancer, is based on an analysis of the cancer immunity cycle (CIC), which looks at how immune system signals affect the success of immunotherapy. Using this framework and AI tools, the researchers identified specific patterns of cellular activity linked to the molecular stages of the disease and developed the IFIT index. This innovation highlights the potential of AI in advancing personalized medicine and offers new prospects in the fight against cancer. The team also indicated that this technique will continue to be refined through future collaborative studies involving other cancer types.

"Immunotherapy represents one of the most promising frontiers in the fight against cancer, and by using artificial intelligence models, we can further fine-tune treatments based on each patient's immune profile," said Rubén Armañanzas, leader of DATAI's laboratory Digital Medicine and one of the lead authors of the study.

 


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88

Latest Pathology News

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
15 Nov 2024  |   Pathology

Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
15 Nov 2024  |   Pathology

Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
15 Nov 2024  |   Pathology



GLOBE SCIENTIFIC, LLC