New Research Platform Assesses Brain Cancer Mutations during Surgery
Posted on 04 Jun 2024
Brain cancer, particularly a type known as glioma, is notoriously difficult to treat and generally has a poor five-year survival rate. Given the aggressive nature of malignant tumors, rapid decision-making during surgery is crucial. A newly developed surgical platform now enables critical decisions about tumor treatment to be made within minutes during operations.
Researchers at the Mayo Clinic (Rochester, MN, USA) employed mass spectrometry to detect key gene mutations, specifically isocitrate dehydrogenase (IDH) mutations, in brain cancer in real-time. Mass spectrometry, a sensitive technique for analyzing substances in tissue samples, including those altered in cancer, was pivotal in this study. Over 240 small tissue biopsies were collected from patients undergoing both asleep and awake brain surgeries for suspected glioma at Mayo Clinic between 2021 and 2023, with an additional 137 biopsies provided by an international collaborator. Neurosurgeons focused on the core of the tumor to identify the IDH mutation and also examined the surrounding tissues to determine if the cancer had spread.
During surgery, the tissue samples were placed on a glass slide, and the mass spectrometer enabled researchers to identify the presence of the IDH mutation within just two minutes, achieving 100% accuracy. This capability not only enhances the accuracy of real-time diagnoses but also allows surgeons to assess the patient’s prognosis more effectively and carry out tumor resections to improve outcomes. Going forward, this innovative platform could enable surgeons to utilize the critical window of opportunity in the operating room to customize treatments based on the molecular characteristics of the tumor, fostering a more personalized approach to medicine. The researchers are continuing their studies to identify additional molecular markers in tumors where the IDH mutation is absent and plan to extend their findings to other types of brain cancers.
“The ability to identify this mutation during brain surgery means that one day in the future we may be able to treat patients with this specific mutation locally before they leave the operating room,” said Alfredo Quiñones-Hinojosa, the study’s senior author. “Therefore, we will be able to bring the fight against cancer to the operating room, before chemotherapy and radiation treatments begin, and before the disease has progressed and invaded further.” The study was published in the journal PNAS on May 28, 2024.