We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Handheld Pen Enables Real-Time Tissue Identification during Surgery

By LabMedica International staff writers
Posted on 30 Aug 2023

Thyroid and parathyroid gland surgeries pose significant challenges, even for experienced surgeons. These relatively small neck structures share characteristics like color and texture, complicating visual differentiation. For instance, during thyroid removal procedures, accidental parathyroid removal occurs in about 25% of cases. Similarly, unsuccessful parathyroid removals often result from the inability to locate and resect diseased parathyroid tissue, as thyroid nodules and lymph nodes can be mistaken for parathyroid tissue. There is a critical need for innovative methods to preserve healthy tissue and ensure precise resection.

In a new project, surgeons at Baylor College of Medicine (Houston, TX, USA) extensively tested the MasSpec Pen during thyroid and parathyroid surgeries. In the operating room, the MasSpec Pen helps surgeons identify tissues for resection before actually performing the procedure, ensuring accurate tissue removal without unnecessary damage. Integrating seamlessly into the surgical workflow, the pen can be sterilized like other instruments and simply connected to the mass spectrometer. Its intuitive use holds immense potential for saving time during surgery. The pen primarily detects small molecules like metabolites (cell metabolism byproducts) and lipids created by cells. Each tissue has a unique metabolite and lipid pattern. While many molecules are similar across tissues, their concentrations vary based on tissue type, enabling surgeons to differentiate tissues. The process is simple: the surgeon places the pen gently on the tissue, which deposits a droplet of room-temperature sterile water, extracting small molecules. The droplet is then directed to a real-time mass spectrometer that reveals the tissue's molecular composition, indicating its type. Importantly, this procedure does not harm the analyzed tissues.


Image: The MasSpec Pen being used to probe tissue during surgery (Photo courtesy of Baylor College of Medicine)
Image: The MasSpec Pen being used to probe tissue during surgery (Photo courtesy of Baylor College of Medicine)

In order to assess the precision of this novel technology, the scientists conducted a comparison between the tissue identification outcomes produced by the MasSpec Pen and the well-established method of tissue identification—pathology analysis. Pathologists are experts who specialize in microscopically discerning tissue samples. The MasSpec Pen exhibited exceptional accuracy in distinguishing thyroid, parathyroid, and lymph node tissues during surgeries, achieving accuracy rates exceeding 90%. Results from the MasSpec Pen analysis were available in around 20 seconds, whereas processing samples for pathology analysis (referred to as frozen section) during surgery can extend to an hour, thus saving both procedure time and cost. Typically, prolonged surgeries heighten the risk of complications. The use of the MasSpec Pen offers the benefit of real-time tissue identification during surgical procedures, enhancing patient care.

“The MasSpec Pen could be applied to surgeries of other organs, such as lungs or pancreas,” said co-corresponding author Dr. James Suliburk, associate professor of surgery and member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. “We think this can really revolutionize how we do surgery.”

Related Links:
Baylor College of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Latest Pathology News

AI Advancements Enable Leap into 3D Pathology

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing