We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Artificial Intelligence Methods Could Replace Histochemical Staining

By LabMedica International staff writers
Posted on 02 Nov 2022

In the hospital, there is a group of doctors who use tissue samples as "evidence materials", analyze the evidence using knives, slicers and microscopes to extract clues from the tissue samples, and provide patients with "verdicts" - diagnostic reports. They are called the "judges" of the hospital - the pathologists. Pathologists observe the samples by staining them first. However, the standard procedures for staining tissue samples in histopathology are time-consuming and require specialized laboratory infrastructure, chemical reagents, and skilled technicians. Uncertainty in tissue staining in the handling of different laboratories and histology technicians may lead to misdiagnosis. In addition, the original tissue sample is not preserved by these histochemical staining techniques currently in use since each step of the procedures has irreversible impact on the sample.

With the advancement of artificial intelligence (AI), researchers are using AI techniques to improve pathology workflow. A recent study by researchers at the University of California Los Angeles (UCLA, Los Angeles, CA, USA) used deep neural networks to virtually stain microscopic images of unlabeled tissue. Deep neural networks have already been applied to stain unlabeled tissue section images, avoiding different laborious and time-consuming histochemical staining processes. There are, however, some bottlenecks. The most widely used autofocusing method demand many focus points across the tissue slide area with high focusing precision, and the best focal plane is determined by an iterative search algorithm, which is time consuming and may introduce photodamage and photobleaching on the samples.


Image: Researchers are using AI techniques to improve pathology workflow (Photo courtesy of Pexels)
Image: Researchers are using AI techniques to improve pathology workflow (Photo courtesy of Pexels)

To overcome these problems, the researchers presented a new deep learning-based fast virtual staining framework. Compared to the standard virtual staining framework, the new framework demonstrated by the researchers uses fewer focal points and reduces the focusing precision for each focus point to acquire coarsely-focused whole slide autofluorescence images of tissue. The new virtual staining framework can significantly reduce the time for autofocusing and the entire image acquisition process. Despite loss of image sharpness and contrast compared to standard virtual staining frameworks, high quality staining can still be produced, closely matching the corresponding histochemically stained ground truth images. Furthermore, this framework can also be used as an add-on module to improve the robustness of the standard virtual staining framework. This fast virtual staining framework will have more development prospects in the future.

“This framework uses an autofocusing neural network (termed Deep-R) to digitally refocus the defocused autofluorescence images. Then a virtual staining network is used to transform the refocused images into virtually stained images,” wrote the authors. “The deep learning-based framework decreases the total image acquisition time needed for virtual staining of a label-free whole slide images (WSI) by ~32%, also resulting in a ~89% decrease in the autofocusing time per tissue slide.”

“This fast virtual staining workflow can also be expanded to many other stains, such as Masson's Trichrome stain, Jones' silver stain, and immunohistochemical (IHC) stains,” the authors concluded. “Although the virtual staining approach presented here was demonstrated based on the autofluorescence imaging of unlabeled tissue sections, it can also be used to speed up the virtual staining workflow of other label-free microscopy modalities.”

Related Links:
UCLA


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Urine Strips
11 Parameter Urine Strips
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Latest Pathology News

New Barcode Technology to Help Diagnose Cancer More Precisely

Mapping of Atherosclerotic Plaque Cells Predicts Future Risk of Stroke or Heart Attack

AI Analysis of Immune Cells Predicts Breast Cancer Prognosis