We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Cause Found for Rare Aggressive Ovarian Cancer

By LabMedica International staff writers
Posted on 10 Apr 2014
The genetic cause of a rare type of ovarian cancer known as small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), that most often strikes girls and young women has been revealed.

This type of cancer, SCCHOT, usually is not diagnosed until it is in its advanced stages and it does not respond to standard chemotherapy, and 65% of patients die within two years. It can affect girls as young as 14 months, and women as old as 58 years, with a mean age of only 24 years old.

Image: Histopathology of small cell carcinoma of the ovary, hypercalcemic type; the tumor cells are arranged in small nests (Photo courtesy of Dr. Dharam Ramnani).
Image: Histopathology of small cell carcinoma of the ovary, hypercalcemic type; the tumor cells are arranged in small nests (Photo courtesy of Dr. Dharam Ramnani).

An international team led by the Translational Genomics Research Institute (TGen; Phoenix, AZ, USA) analyzed the genetic etiology of SCCOHT by performing next-generation sequencing on a series of tumors and germline samples from 12 SCCOHT cases. This included nine tumors with four matched germline samples and three additional germline samples, and on the SCCOHT cell line BIN-67. DNA from tumor and blood specimens was analyzed using whole-genome sequencing and whole-exome sequencing.

Genomic DNA from each sample was fragmented to a target size of 300 to 350 base pairs (bp). After ligation, samples were run on a gel to separate products and the products were quantified using the High-Sensitivity DNA chip on an Agilent 2100 Bioanalyzer (Santa Clara, CA, USA). A tissue microarray (TMA) representing nine SCCOHT cases was fabricated at TGen for the study. Protein blot analysis was performed on whole cell extracts.

The scientists identified frequent germline and somatic gene SWItch/Sucrose NonFermentable (SWI/SNF) Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 4 (SMARCA4) mutations and SMARCA4 protein loss in SCCOHT. The loss of SMARCA4 protein expression is extremely specific to SCCOHT and can facilitate the differential diagnosis of SCCOHT.

Jeffrey Trent, PhD, President and Research Director of TGen, and the study's senior author, said, “This is a thoroughly remarkable study. Many genetic anomalies can be like a one-lane road to cancer; difficult to negotiate. But these findings indicate a genetic superhighway that leads right to this highly aggressive disease. The correlation between mutations in SMARCA4 and the development of SCCOHT is simply unmistakable.” The study was published on March 23, 2014, in the journal Nature Genetics.

Related Links:

Translational Genomics Research Institute
Agilent



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Latest Pathology News

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis