LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Simple Blood Test Could Detect Brain Insulin Resistance

By LabMedica International staff writers
Posted on 13 Aug 2025

When the brain no longer responds properly to insulin, it can contribute to overweight, diabetes, and Alzheimer’s disease. Detecting brain insulin resistance has so far been cost- and time-intensive, with no biomarkers available for clinical use. Now, new research has revealed small chemical modifications to genetic material in the blood that accurately indicate how well the brain responds to insulin, paving the way for a simple diagnostic test.

A team of interdisciplinary researchers at the German Center for Diabetes Research (DZD, Munich, Germany) identified epigenetic changes—specifically DNA methylation patterns—that reflect brain insulin sensitivity. Using machine learning, the team analyzed blood samples from people without type 2 diabetes but with varying brain insulin responses, integrating imaging, metabolic, and epigenetic data for precision classification.


Image: Biomarkers for brain insulin resistance have been discovered in the blood (Photo courtesy of Adobe Stock)
Image: Biomarkers for brain insulin resistance have been discovered in the blood (Photo courtesy of Adobe Stock)

In a first cohort of 167 participants, the researchers identified 540 CpG sites whose methylation patterns reliably distinguished between individuals with and without brain insulin resistance. Many of these sites were linked to an elevated risk of type 2 diabetes. The findings, published in Science Translational Medicine, were validated in two independent replication cohorts of 33 and 24 people, achieving accuracies of 83% to 94%.

The analysis showed that blood methylation changes at 98 of these CpG sites correlated with brain methylation patterns in public datasets. Many related genes are involved in neuronal development, synapse formation, and signal transmission, suggesting that blood epigenetic profiles can reflect key brain processes. The results were independent of age or body mass index.

These biomarkers could enable early identification of individuals at risk for brain insulin resistance, allowing for targeted interventions such as intensified lifestyle changes or new therapies. The researchers now aim to develop a standardized clinical test panel based on the 540 CpG sites. Future studies will explore whether such signatures could also help detect neurodegenerative diseases like Alzheimer’s.

“In future, the newly identified epigenetic markers could serve as a screening instrument in order to detect risk patients early on and provide them with targeted treatment – such as through more intensified lifestyle changes or new active substances,” said Meriem Ouni, last author of the study. "If we know who is insulin resistant in the brain, we can make interventions much more targeted and effective."

Related Links:
DZD


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Rapid Molecular Testing Device
FlashDetect Flash10

Latest Molecular Diagnostics News

Novel Urine-Based Test Detects Prostate Cancers
12 Aug 2025  |   Molecular Diagnostics

MRD Testing Can Identify Breast Cancer Survivors at Higher Risk of Recurrence
12 Aug 2025  |   Molecular Diagnostics

Cytoskeletal Protein Linked to Cervical Cancer Growth Paves Way for Precise Diagnostic Tools
12 Aug 2025  |   Molecular Diagnostics