Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

By LabMedica International staff writers
Posted on 20 Dec 2024

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including the DNA sequence and epigenetic markers like methylation, which regulates gene activity. Cell-free DNA in the blood has shown promise as a tool for early Alzheimer’s detection, as it can capture both general signs of neurodegeneration and disease-specific changes that aid in diagnostic testing. Researchers are now preparing to conduct a validation study of a blood test for the early detection of neurodegeneration in Alzheimer’s disease. If successful, this test could not only help in early diagnosis but also assist in monitoring disease progression and contribute to the development of new diagnostic methods and treatments.

Alzheimer’s disease, the leading cause of dementia, is a significant public health issue, affecting millions of people worldwide. Early detection and intervention are key to slowing symptom onset and disease progression. However, current diagnostic tools are typically used after symptoms appear, by which time considerable brain damage has already occurred, narrowing the window for effective treatments, lifestyle changes, and other interventions. The University of Kansas Alzheimer’s Disease Research Center (KU ADRC, Kansas City, KS, USA) has partnered with Brigham Young University (BYU, Provo, UT, USA) to conduct a validation study on a blood test under development at BYU, designed to detect cell-free DNA. At BYU, researchers will analyze the methylation of cell-free DNA as an early indicator of neurodegeneration in blood samples from healthy individuals who later developed Alzheimer’s disease.


Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

KU ADRC is providing 775 longitudinal Alzheimer’s samples for the study. These blood samples were collected over a period of up to 12 years from a cohort of Alzheimer’s patients, allowing the researchers to track how cell-free DNA markers change over time. By analyzing methylation patterns, the team aims to detect and quantify cell-free DNA from specific neurons impacted by Alzheimer’s disease, as well as other neurodegenerative conditions. Initial results indicate that elevated levels of cell-free DNA from cortical neurons in the blood are linked to Alzheimer’s disease and cases of mild cognitive impairment that progress to Alzheimer’s. The researchers have refined their techniques to improve accuracy and sensitivity. Using the KU ADRC blood samples, the team plans to validate the test with a larger sample size over a longer period.

“We are bringing together the best of both worlds: the work we have done to collect these samples and data over time and the work BYU has done with this promising measure that is really cutting-edge,” said Jeffrey Burns, M.D., co-director of KU ADRC. “This is why we collect these data and why people participate — and now it really enables us to move the science forward.”

Related Links:
University of Kansas Alzheimer’s Disease Research Center
Brigham Young University


Latest Molecular Diagnostics News