We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo
Medica 2024
Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Single Metagenomic Next-Generation Sequencing Test Can Detect All Infectious Pathogens

By LabMedica International staff writers
Posted on 12 Nov 2024
Image: The clinical laboratory workflow for mNGS (Photo courtesy of UCSF)
Image: The clinical laboratory workflow for mNGS (Photo courtesy of UCSF)

Metagenomic next-generation sequencing (mNGS) is a comprehensive sequencing method that analyzes all nucleic acids (DNA and RNA) in a clinical sample at high depth, generating 10-20 million sequences per sample. This approach can be applied to any type of clinical sample, including cerebrospinal fluid, plasma, respiratory secretions, urine, stool, or tissue. Now, mNGS offers the potential to diagnose a wide range of infectious agents—viruses, bacteria, fungi, and parasites—through a single test.

Researchers at the UCSF Center for Next-Gen Precision Diagnostics (San Francisco, CA, USA) have developed an mNGS test capable of detecting sequence reads for all pathogens, helping to identify the cause of an infection. Initially, the UCSF team developed an mNGS test to identify pathogens in cerebrospinal fluid for meningitis and encephalitis diagnosis. This was followed by the development of a clinical plasma mNGS test designed to detect DNA viruses, bacteria, fungi, and parasites responsible for sepsis and disseminated infections in other organs. To analyze mNGS data quickly for pathogen identification, the team employs SURPI+ (SURPI PLUS), a clinical bioinformatics software pipeline.

In research published in Nature Medicine, the team demonstrated that their mNGS test for cerebrospinal fluid accurately identified 86% of neurological infections. They are now working on validating clinical tests for detecting all microorganisms (bacteria, viruses, fungi, and parasites) causing pneumonia in respiratory fluids like bronchoalveolar lavage or tracheal aspirates. Additionally, in a related study published in Nature Communications, the team used mNGS to identify pneumonia-causing pathogens in respiratory fluids and automated the process to generate faster results.


Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Food Allergens Assay Kit
Allerquant 14G A
New
Flow Cytometer
BF – 710

Latest Molecular Diagnostics News

Cutting-Edge Diagnostic Tool Rapidly Identifies Emerging SARS-CoV-2 Variants

Novel Method Analyzes Genetic Variations in Families with High Incidence of Breast Cancer

cfDNA Testing Reduces Pregnancy Risks