We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Method Analyzes Genetic Variations in Families with High Incidence of Breast Cancer

By LabMedica International staff writers
Posted on 11 Nov 2024

Breast cancer is the most prevalent type of cancer among women in Western countries, with genetic variants responsible for up to 10% of cases. Hereditary or familial breast cancer accounts for about 15% of all breast cancer cases. Mutations in well-known genes such as BRCA1 and BRCA2 have been associated with an increased risk of familial breast and ovarian cancer, but these genes only explain 30-40% of familial cases. This leaves a significant number of cases with unclear genetic origins, particularly in families with a history of the disease across multiple generations. Despite this, many familial cases remain genetically unexplained due to the complex nature of the genetic factors involved. Now, a study has provided new insights into the genetic causes of familial breast cancer, particularly in families of Middle Eastern descent.

Researchers at The Hebrew University of Jerusalem (Jerusalem, Israel) conducted the study using an advanced method to examine genetic variations in families with a history of breast cancer. This approach combines machine learning with in-depth analysis of protein structures to investigate rare genetic variants. By performing whole genome sequencing and applying AI analysis, the researchers studied genetic variations in women from Middle Eastern families. The study identified significant genetic changes, connecting specific gene subgroups to critical cellular pathways involving peroxisomes, which are involved in fat metabolism. The analysis of 1218 genetic variants from 12 families revealed 80 genes that could have a significant impact on breast cancer risk. Among these, 70 genes had not been previously linked to breast cancer, greatly enhancing our understanding of the disease's genetic basis.


Image: A study has provided new insights into the genetic underpinnings of familial breast cancer (Photo courtesy of 123RF)
Image: A study has provided new insights into the genetic underpinnings of familial breast cancer (Photo courtesy of 123RF)

The study, published in Briefings in Bioinformatics, highlighted the importance of certain cellular pathways, particularly those involving peroxisomes and mitochondria, in increasing susceptibility to breast cancer and influencing patient survival. These pathways were particularly relevant across a variety of ethnic groups in seven of the studied families, emphasizing the broader significance of the findings. These discoveries open new possibilities for genetic testing and the development of targeted therapies, which could greatly improve breast cancer management and treatment across diverse populations. Furthermore, these findings may eventually lead to the creation of a specialized genetic testing panel for these groups, improving early detection and personalized treatment strategies as research continues.

"Our research not only sheds light on the elusive genetic factors behind familial breast cancer but also heralds the possibility of new, targeted treatment strategies that could eventually benefit a wider array of patients, particularly those from underrepresented groups," said Prof. Dina Schneidman-Duhovny from the Rachel and Selim Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem who led the study.


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Centrifuge
Centrifuge 5430/ 5430 R

Latest Molecular Diagnostics News

Finger Prick Blood Test to Enable Early Alzheimer’s Detection

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

Single Metagenomic Next-Generation Sequencing Test Can Detect All Infectious Pathogens