We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Could Predict Young Adults Who Might Go On To Develop Diseases of Aging

By LabMedica International staff writers
Posted on 13 Mar 2024

Everyone ages differently and two people can often have the same chronological age, but very different biological ages. The future of medicine lies in knowing in advance about how someone is aging and designing personalized interventions to delay disease and extend a person’s health span. Researchers have now identified blood markers that are indicative of healthy aging or accelerated aging processes. These markers offer insights into a person’s biological age—essentially, the rate at which their cells and organs are aging, independent of their actual date of birth. This breakthrough research illuminates the biological pathways and substances that might be foundational to the aging process, providing clues as to why aging varies among individuals. It also proposes potential targets for treatments aimed at slowing the aging process and enhancing the duration of good health. This could lead to the development of a blood test capable of determining biological age in younger adults or identifying individuals at risk of developing age-related diseases.

In the study, researchers at University of Pittsburgh (Pittsburgh, PA, USA) compared 196 older individuals, categorizing them as either healthy or rapid agers based on their performance in simple walking tests. These tests are significant as walking ability integrates cardiovascular, muscular, and neurological health, making it a strong predictor of hospitalization and mortality risk in older adults. The study was unique because it compared rapid agers, aged between 65 and 75 who struggled with these physical tasks but were chronologically younger, against healthy agers, who were 75 and older but could complete the tasks without resting. This approach allowed the researchers to focus on biological rather than chronological age, setting their study apart from others that typically compare young adults to older populations. Through metabolomic analysis of blood samples from both groups, clear differences in metabolites were found between healthy and rapid agers, suggesting that blood metabolites can reflect biological age.


Image: A new study has revealed the molecular fingerprint of biological aging (Photo courtesy of 123RF)
Image: A new study has revealed the molecular fingerprint of biological aging (Photo courtesy of 123RF)

The researchers then established the Healthy Aging Metabolic (HAM) Index from 25 specific metabolites. This index proved more effective in differentiating between healthy and rapid agers than other aging measures. When applied to a separate group of older adults from a study in Wisconsin, the HAM Index successfully predicted individuals' ability to walk outside for 10 minutes without stopping with about 68% accuracy. Further analysis through an artificial intelligence model helped identify three key metabolites as potential promoters of healthy aging or accelerators of rapid aging. Future investigations will explore how these metabolites and their associated molecular pathways influence the aging process, with the goal of finding interventions to slow aging. The researchers also aim to study how younger individuals' metabolomes change over time in order to create a blood test that can estimate the biological age in young adults or predict the onset of aging diseases.

“While it’s great that we can predict biological aging in older adults, what would be even more exciting is a blood test that, for example, can tell someone who’s 35 that they have a biological age more like a 45-year-old,” said Aditi Gurkar, Ph.D., assistant professor of geriatric medicine at Pitt’s School of Medicine. “That person could then think about changing aspects of their lifestyle early — whether that’s improving their sleep, diet or exercise regime — to hopefully reverse their biological age.”

Related Links:
University of Pittsburgh


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Latest Molecular Diagnostics News

Advanced Blood Test to Spot Alzheimer's Before Progression to Dementia

Multi-Omic Noninvasive Urine-Based DNA Test to Improve Bladder Cancer Detection

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment