We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Groundbreaking Diagnostic Technique Enables Faster and More Accurate Detection of Neurodegenerative Diseases

By LabMedica International staff writers
Posted on 11 May 2023

Neurodegenerative conditions like Alzheimer's, Parkinson's, mad cow disease, and chronic wasting disease (CWD) all exhibit a shared characteristic: the accumulation of misfolded proteins within the central nervous system. Identifying these misfolded proteins is vital for understanding and diagnosing these diseases. However, existing diagnostic techniques, such as enzyme-linked immunosorbent assay and immunohistochemistry, may be costly, labor-intensive, and restrictive in terms of antibody specificity. Now, scientists have designed an innovative diagnostic procedure that enables quicker and more precise detection of neurodegenerative diseases, offering prospects for earlier intervention and management.

The technique, called Nano-QuIC (Nanoparticle-enhanced Quaking-Induced Conversion), has been devised by researchers at University of Minnesota (Minneapolis, MN, USA) and significantly improves the performance of advanced protein-misfolding detection methods like the NIH Rocky Mountain Laboratories' Real-Time Quaking-Induced Conversion (RT-QuIC) assay. With Nano-QuIC, the detection times are drastically cut down from around 14 hours to a mere four hours, while the sensitivity is heightened tenfold. This rapid and highly precise detection technique is particularly critical for comprehending and controlling the transmission of CWD, a disease rampant among deer in North America, Scandinavia, and South Korea. The scientists are hopeful that Nano-QuIC could eventually be instrumental in detecting protein-misfolding diseases in humans, particularly Parkinson's, Creutzfeldt-Jakob Disease, Alzheimer's, and ALS.


Image: New technique could enable rapid detection of neurodegenerative diseases (Photo courtesy of University of Minnesota)
Image: New technique could enable rapid detection of neurodegenerative diseases (Photo courtesy of University of Minnesota)

“This research mainly focuses on CWD in deer, but ultimately our goal is to expand the technology for a broad spectrum of neurodegenerative diseases, Alzheimer’s and Parkinson’s being the two main targets,” said Sang-Hyun Oh, senior co-author of the paper and a professor in the College of Science and Engineering. “Our vision is to develop ultra-sensitive, powerful diagnostic techniques for a variety of neurodegenerative diseases so that we can detect biomarkers early on, perhaps allowing more time for the deployment of therapeutic agents that can slow down the disease progression. We want to help improve the lives of millions of people affected by neurodegenerative diseases.”

“Testing for these neurodegenerative diseases in both animals and humans has been a major challenge to our society for decades,” said Peter Larsen, senior co-author of the paper and an assistant professor in the College of Veterinary Medicine. “What we’re seeing now is this really exciting time when new, next generation diagnostic tests are emerging for these diseases. The impact that our research has is that it’s greatly improving upon those next generation tests, it’s making them more sensitive and it’s making them more accessible.”

Related Links:
University of Minnesota 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Latest Molecular Diagnostics News

Urine Test to Revolutionize Lyme Disease Testing

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk