We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo
Medica 2024
Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Ultrafast 5-Minute PCR Technology Faster Than Self-Diagnosis Kits

By LabMedica International staff writers
Posted on 25 Feb 2023

PCR technology which detects target nucleic acids by amplifying the DNA amount has witnessed significant progress in the life sciences field since it was first developed in 1984. The molecular diagnostics technology achieved public familiarity during the COVID-19 pandemic, as PCR is capable of detecting nucleic acids that identify the COVID-19 virus. However, the technical nature of the PCR test makes it impossible for the results to be delivered before one to two hours due to its need for repeated temperature cycles (60~95℃). Now, a new ultrafast PCR technology uses photothermal nanomaterials to shorten the test time by 10-fold, as compared with the time taken by the existing test. The new method can be completed in five minutes and delivers a diagnostic performance that is similar to that of the existing test method.

Photothermal nanomaterials generate heat immediately upon light irradiation and rapidly increase in temperature, although the performance can be difficult to maintain due to their low stability. A research team at Korea Institute of Science and Technology (KIST) has developed a polymer composite that physically holds photothermal nanomaterials and can overcome their instability. By applying it to a PCR system, the team has developed a compact PCR system without a heat plate. Additionally, the researchers have implemented a multiplex diagnostic technology that detects several genes simultaneously, enabling it to distinguish several types of COVID-19 variants in a single reaction.


Image: Schematic diagram of PCR temperature cycle using photothermal effect in polymeric microparticles (Photo courtesy of KSIT)
Image: Schematic diagram of PCR temperature cycle using photothermal effect in polymeric microparticles (Photo courtesy of KSIT)

"Through additional research, we plan to miniaturize the developed ultrafast PCR technology this year, to develop a device that can be utilized anywhere," said Dr. Sang Kyung Kim, Director at the Center for Augmented Safety System with Intelligence, Sensing of the KIST. "While maintaining the strength of PCR as an accurate diagnostic method, we will increase its convenience, field applicability, and promptness, by which we expect that it will become a precision diagnostic device that can be used at primary local clinics, pharmacies, and even at home. In addition, PCR technology is a universal molecular diagnostic technology that can be applied to various diseases other than infectious diseases, so it will become more applicable."

Related Links:
KIST


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Flow Cytometer
BF – 710
New
Leishmania Test
Leishmania Real Time PCR Kit

Latest Molecular Diagnostics News

Single Metagenomic Next-Generation Sequencing Test Can Detect All Infectious Pathogens

Cutting-Edge Diagnostic Tool Rapidly Identifies Emerging SARS-CoV-2 Variants

Novel Method Analyzes Genetic Variations in Families with High Incidence of Breast Cancer