New Tool Assesses Cost of ctDNA Testing

By LabMedica International staff writers
Posted on 22 Nov 2022

Circulating tumor DNA (ctDNA) is a promising new biomarker with multiple potential applications in cancer care. Estimating total cost of ctDNA testing is necessary for reimbursement and implementation, but challenging because of variations in workflow.

Recent proof-of-concept studies have demonstrated the diagnostic potential of the analysis of circulating tumor-derived DNA fragments as a tumor biomarker supporting clinical decision making. These ctDNA fragments can be analyzed using liquid biopsy approaches in blood plasma and urine among others.


Image: The developed micro-costing framework. cfDNA, cell-free DNA; ctDNA, circulating tumor DNA (Photo courtesy of the Amsterdam University Medical Centers)

Medical Scientists from the Amsterdam University Medical Centers (Amsterdam, The Netherlands) developed a framework that provides a consistent total cost calculation for ctDNA testing across different diagnostic workflows and platforms, including aspects such as personnel, materials, overhead, and failures, while taking test volume into account. The framework's developers also provide an open-access tool to allow for laboratory-specific calculations to explore the total costs of ctDNA testing-specific workflow parameters.

The diagnostic workflow for ctDNA testing was mapped in interactive discussions with experts, including specialists in laboratory medicine, clinical molecular biologists, pathologists, clinical scientists in molecular pathology, laboratory technicians, and ctDNA specialists, starting from blood sample collection to diagnostic test result. A micro-costing approach was used for cost calculation to ensure that the actual resources utilized and the unit costs of those resources are included in the cost calculations. The approach in the cost calculation tool was based on the activity-based costing method. According to the activity-based costing method, cost objects consume activities, and activities consume costs.

The team reported the total costs per sample decrease as the testing volume increases. Therefore, the total costs per sample are reported for a testing volume of one up to the maximum testing volume of the platforms. The maximum testing volume varies between case studies. For the case study Digital Droplet PCR, the costs ranged from USD 199 to USD 1,420, with a maximum testing volume (i.e., 200 samples per week for this case study) to one sample per week. For the case study Real-Time PCR 1, the total per sample costs ranged from USD 761 to USD 1,873 (for 150 samples to one sample per week). For the case study Real-Time PCR 2, the costs ranged from USD 564 to USD 1,148 (for 20 samples to one sample per week). For the case study Mass Spectrometry, the costs ranged from USD 481 to USD 2,630 (for 28 samples to one sample per week). For the case study Commercial NGS Panel, the costs ranged from USD 1,683 to USD 8,399) (for 32 samples to one sample per week). For the case study Custom NGS Panel, the costs ranged from USD 592 to USD 9,124) (for 96 samples to one sample per week).

The authors concluded that they have developed an adaptable micro-costing framework and accompanying open access tool that allows users to explore the total costs of ctDNA analysis per sample, from sample collection to the diagnostic test result, of different diagnostic workflows. The study was published on Nov 16, 2022 in the Journal of Molecular Diagnostics.

Related Links:
Amsterdam University Medical Centers 


Latest Molecular Diagnostics News