We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Paper-Based Microneedle Skin Patch for Continuous Glucose Monitoring

By LabMedica International staff writers
Posted on 23 Sep 2020
A microneedle skin patch for the continuous monitoring of an individual’s glucose level was designed to be a painless and disposable screening and diagnostic test for diabetes patients, as well as those with pre-diabetes.

Porous microneedles are expected to have a variety of potential applications in diagnostics owing to their ability to penetrate human skin painlessly and extract bio‐fluid by capillary action. Investigators at the University of Tokyo (Japan) have applied this technology for screening and monitoring levels of glucose.

Image: Illustration demonstrating painless and biodegradable microneedles on a paper patch (Photo courtesy of University of Tokyo)
Image: Illustration demonstrating painless and biodegradable microneedles on a paper patch (Photo courtesy of University of Tokyo)

The microneedles were fabricated by pouring a mixture of a melted biodegradable polymer and salt into the cone-shaped cavities of a micro-mold while applying heat. The mold was then inverted with the needles on the lower side, and the device was placed on top of a sheet of paper with high pressure applied from above. The high pressure forced the polymer mixture into the pores of the paper, securing the attachment and allowing fluid drawn through the needles to pass effortlessly into the paper. After removal from the mold, the needles were cooled in a solution that removed the salt, leaving behind pores, through which fluid could flow into the paper. A paper glucose sensor was then attached to the paper base of the needle array. The final product was disposable and biodegradable, and its use did not require any medical expertise or training.

The paper‐based glucose sensor was used to demonstrate the absorption property of the microneedles, and showed successful sample extraction and glucose concentration analysis from agarose gel‐based skin mimics. The investigators maintained that the platform had the potential to integrate various different paper‐based bio‐sensors in order to function as painless and disposable rapid screening and diagnostic tests for many metabolites.

"We have overcome this problem by developing a way to combine porous microneedles with paper-based sensors," said senior author Dr. Beomjoon Kim, professor in the institute of industrial science at the University of Tokyo. "The result is low-cost, disposable, and does not require any additional instruments."

The microneedle device was described in the August 2020 issue of the journal Medical Devices & Sensors.


Related Links:
University of Tokyo


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Automated Nucleic Acid Extractor
eLab

Latest Molecular Diagnostics News

Smarter Blood Tests Deliver Faster Diagnoses and Improved Outcomes

Single Metagenomic Next-Generation Sequencing Test Can Detect All Infectious Pathogens

Cutting-Edge Diagnostic Tool Rapidly Identifies Emerging SARS-CoV-2 Variants