Infrared Spectrometry Method Used for Triage of Brain Cancer Patients
By LabMedica International staff writers
Posted on 24 Oct 2019
A team of British researchers has adapted an advanced spectrophotometric method for use in brain cancer testing as a triage tool to speed up the diagnostic process.Posted on 24 Oct 2019
Non-specific symptoms, as well as the lack of a cost-effective test to triage patients in primary care, has resulted in increased time-to-diagnosis and a poor prognosis for brain cancer patients. A rapid, cost-effective, triage test could significantly improve this scenario.
Towards this end, investigators at the University of Strathclyde (Glasgow, United Kingdom), the spinoff biotechnology company ClinSpec Diagnostics Limited (Glasgow, United Kingdom), and colleagues at other institutions developed instrumentation based on testing blood samples by attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy to differentiate cancer and control patients.
Fourier-transform infrared spectroscopy (FTIR) is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-spectral-resolution data over a wide spectral range. This confers a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time. The term Fourier-transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical process) is required to convert the raw data into the actual spectrum. Attenuated total reflection (ATR) is a sampling technique used in conjunction with infrared spectroscopy, which enables samples to be examined directly in the solid or liquid state without further preparation.
The investigators developed disposable sample slides that allowed the rapid preparation and analysis of multiple samples, enabling high-throughput ATR-FTIR spectroscopy optimized for clinical research. Based upon the design of a microscope slide, these optical sample slides contained four sample areas; one for background measurements and three for repeat measurements of a single patient. This device was developed for the triplicate measurement of patient samples with optimized spectral throughput and performance.
The investigators described the transition to this technology for the established application of ATR-FTIR spectroscopy of blood serum for the detection of brain cancer, and the subsequent impact on clinical diagnostics. In the current study, they analyzed samples from a prospective cohort of 104 patients and found that the blood test was able to differentiate cancer and control patients at a sensitivity and specificity of 93.2% and 92.8%, respectively.
Senior author Dr. Matthew J. Baker, reader in pure and applied chemistry at Strathclyde University and CSO at ClinSpec Diagnostics, said, "This is the first publication of data from our clinical feasibility study and it is the first demonstration that our blood test works in the clinic. Earlier detection of brain tumors in the diagnostic pathway brings the potential to significantly improve patient quality of life and survival, whilst also providing savings to the health services."
The clinical feasibility study was published in the October 8, 2019, online edition of the journal Nature Communications.
Related Links:
University of Strathclyde
ClinSpec Diagnostics Limited