We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

MALDI-TOF MS Used to Identify Pythiosis

By LabMedica International staff writers
Posted on 25 Sep 2018
Pythiosis is a life-threatening infectious disease caused by the oomycete Pythium insidiosum. The disease has been increasingly reported worldwide and most patients with pythiosis undergo surgical removal of an infected organ.

In the past decade, the matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has emerged, as a novel and powerful diagnostic tool for facilitating the clinical identification of many pathogenic microorganisms, including bacteria and fungi.

Image: The matrix-assisted laser desorption ionization–time of flight mass spectrometer (Photo courtesy of Bruker Daltonics).
Image: The matrix-assisted laser desorption ionization–time of flight mass spectrometer (Photo courtesy of Bruker Daltonics).

Scientists at the Mahidol University (Bangkok, Thailand) isolated a total of 13 strains of P. insidiosum, from eight humans and five animals with pythiosis, from different geographic locations and these strains were divided into two groups. All organisms were maintained on Sabouraud dextrose agar at 25 ⁰C. Several small portions of a colony of each organism were transferred to a 50-mL flask containing 10 mL Sabouraud dextrose broth, and incubated at 37 ⁰C for one week, before harvesting fungal material for protein extraction.

Protein was extracted from the organisms and extracted protein-containing supernatant was spotted onto a clean ground steel target plate in 40 replicates (for generating a MALDI-TOF MS database of P. insidiosum) or five replicates (for assessing the MALDI-TOF MS for identification of P. insidiosum), air dried at room temperature, and then overlaid with 0.5 µL of the matrix solution. Genomic DNA (gDNA) templates were extracted from the organisms and subjected to single nucleotide polymorphism-based multiplex polymerase chain reaction (PCR).

The scientists reported that MALDI-TOF MS accurately identified all 13 P. insidiosum strains tested, at the species level. Mass spectra of P. insidiosum did not match any other microorganisms, including fungi (i.e., Aspergillus species, Fusarium species, and fungal species of the class Zygomycetes), which have similar microscopic morphologies with this oomycete. MALDI-TOF MS- and rDNA sequence-based biotyping methods consistently classified P. insidiosum into three groups: Clade-I (American strains), II (Asian and Australian strains), and III (mostly Thai strains).

The authors concluded that MALDI-TOF MS has been successfully used for identification and biotyping of P. insidiosum. The obtained mass spectral database allows clinical microbiology laboratories, well equipped with a MALDI-TOF mass spectrometer, to conveniently identify P. insidiosum, without requiring any pathogen-specific reagents (i.e., antigen, antibody or primers). The study was published on September 6, 2018, in the International Journal of Infectious Diseases.

Related Links:
Mahidol University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Latest Molecular Diagnostics News

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

Blood Test Predicts Knee Osteoarthritis Eight Years Before Signs Appears On X-Rays

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans