We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Portable Olfactory Sensor Designed for Diagnosis of Bacteria

By LabMedica International staff writers
Posted on 23 Jan 2018
A portable electronic "nose" (eNose) has been designed to rapidly detect and identify the most common bacteria causing soft tissue infections.

Rapid diagnosis of wound infections is based on bacterial stains, cultures, and polymerase chain reaction assays, and the results are available after several hours at the earliest, but more often not until after days of waiting. Therefore, antibiotic treatment is often administered empirically without a specific diagnosis.

To rectify this situation, a team of Finish bioengineers developed eNose, a device able to produce "an olfactory profile" for each molecular compound in gaseous headspace created by bacterial infection. The profile was analyzed by a computer programmed to differentiate between different compounds.

The investigators used the eNose system for a proof-of-concept study aimed at differentiating the most relevant bacteria causing wound infections. The study utilized a set of clinical bacterial cultures on identical blood culture dishes, and established bacterial lines from the gaseous headspace.

Results revealed that the eNose system was capable of differentiating both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, and Clostridium perfringens with an accuracy of 78% within minutes without prior sample preparation. Most importantly, the system was capable of differentiating MRSA from MSSA with a sensitivity of 83%, a specificity of 100%, and an overall accuracy of 91%.

"Our aim was to create a method for the rapid diagnosis of soft tissue infections. If we had such a method, treatment could be started in a timely manner and targeted to the relevant pathogen directly. This would reduce the need for empirical treatments and shorten diagnostic delays," said first author Dr. Taavi Saviauk, a researcher in the faculty of medicine and life sciences at the University of Tampere (Finland). "The portable eNose device we used does not require laboratory conditions or special training, so it is well suited for outpatient use. The results of this study are a significant step towards our goal."

The eNose study was published in the January 2018 issue of the journal European Surgical Research.

Related Links:
University of Tampere


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Latest Molecular Diagnostics News

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Blood Test Could Detect HPV-Associated Cancers 10 Years before Clinical Diagnosis