We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Diagnostic Solution Identifies Sepsis Causing Microorganisms and Predicts Antibiotic Resistance in 90 Minutes

By LabMedica International staff writers
Posted on 06 Jun 2022

Sepsis is a life-threatening organ dysfunction caused by the body’s toxic response to infection and can progress to septic shock, which has a mortality rate of 40%. A blood culture is the main way to check for the microbial agent (bacteria or fungi) causing the infection and will allow to diagnose the bacteremia or fungemia as well as determine the sensitivity of these microorganisms to antibiotics and antifungals. The speed at which appropriate treatment can be administered, based on the type of infection, determines the survival of the patient. Now, a new in-vitro diagnostic solution for microbial infections identifies the pathogen(s) as well as allows to identify and predict the resistance profile within 90 minutes to ensure that the appropriate anti-infective treatment can be adapted or administered quickly, reducing the risk of death in severe systemic infections.

Weezion’s (Lyon, France) Weezion dx solution is based on a proteomic approach using patented targeted mass spectrometry technology and identifies the pathogen(s) present in the clinical sample, as well as jointly detects and quantifies the proteins responsible for antibiotic resistance. Using a positive blood culture, the solution allows clinicians to identify and predict the resistance profile within 90 minutes.


Image: The Weezion dx solution is designed for medical analysis hospital platforms that diagnose bacteremia (Photo courtesy of Weezion)
Image: The Weezion dx solution is designed for medical analysis hospital platforms that diagnose bacteremia (Photo courtesy of Weezion)

Despite major advances in the last 20 years in understanding the pathophysiology of sepsis, no therapeutic revolution has yet seen the light of day. It is therefore in the diagnostic phase where progress can be made. Reducing the time to receive the results of the identification of the pathogen and its resistance profile will ensure a more rapid implementation or adaptation of a suitable anti-infective treatment. Existing identification methods, based on the molecular detection of the main pathogens and some of their resistance genes, are expensive and non-exhaustive. MALDI/TOF mass spectrometry technology has shortened the identification phase but does not provide any prediction of resistance. The rapid antibiogram from a positive blood culture vial takes several hours of incubation before validation and most of the technologies used are expensive. Therefore there is an urgent need for a resistance identification and determination tool that is rapid, more comprehensive than current methods and economically sustainable.

Designed for medical analysis hospital platforms that diagnose bacteremia, the Weezion dx solution is comprised of an operational pre-analytical sample protocol from a blood culture aliquot that requires limited manual or automated steps, in less than 10 minutes. It follows a global analytical protocol that guarantees a 90-minute diagnostic phase and allows the management of three blood culture samples per hour in order to satisfy the maximum flow of large hospital microbiology platforms. It includes prototype software to manage the decision tree of the mass spectrometry and enables identification of a panel of scout ribosomal peptides specific to microbial families or species that allows for the implementation of a decision tree to ensure accurate identification of 98% of pathogens associated with bacteremia. The Weezion dx solution also enables the identification of a panel of peptides that detects the resistance mechanisms to the three main types of antibiotics used to treat bacteremia.

Related Links:
Weezion 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Latest Microbiology News

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Automated Sepsis Test System Enables Rapid Diagnosis for Patients with Severe Bloodstream Infections

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases