We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Drug-Resistant Strains of Salmonella Causing Bloodstream Infections

By LabMedica International staff writers
Posted on 03 Oct 2019
Salmonella enterica subspecies enterica serovar Typhimurium (known as S. typhimurium) and other non-typhoidal Salmonella are common causes of gastrointestinal infections in people living in industrialized countries.

However, in sub-Saharan Africa (SSA), invasive non-typhoidal Salmonella (iNTS) bloodstream infections are common, totaling around 3.4 million cases annually, with S. typhimurium being responsible for approximately two-thirds of these cases. Drug-resistance has increased in successive groups of S. typhimurium over time and the fatality rate in iNTS can be extremely high.

Image: Color-enhanced scanning electron micrograph showing Salmonella typhimurium (red) invading cultured human cells (Photo courtesy of US National Institute of Allergy and Infectious Diseases).
Image: Color-enhanced scanning electron micrograph showing Salmonella typhimurium (red) invading cultured human cells (Photo courtesy of US National Institute of Allergy and Infectious Diseases).

Scientists at the Institute of Tropical Medicine (Antwerp, Belgium) and their colleagues collected blood samples from people with suspected bloodstream infections from hospitals in the Democratic Republic of Congo. All available azithromycin (AZI) resistant S. typhimurium available to this study were included (n = 54). Samples of 27 representative non-AZI resistant S. typhimurium isolates were selected as controls for this analysis.

The isolates biochemically confirmed as Salmonella spp. were serotyped using commercial antisera. DNA from all 81 strains was purified using the Gentra PureGene Yeast/Bact Kit, following the manufacturer’s guidelines and DNA was sequenced on an Illumina HiSeq platform. Illumina adapter content was removed from the reads using Trimmomatic v.0.33.

It is known that iNTS infections in sub-Saharan Africa are dominated by a type of S. typhimurium known as ST313, which is associated with antibiotic resistance. Two groups of ST313 (named lineage I and II) split off independently and subsequently spread over the African continent. Antibiotic resistance has been growing over time, with lineage II now the primary cause of iNTS infections. Analysis of these S. typhimurium genomes identified a new sub-group that is branching off from ST313, named lineage II.1. Estimated to have emerged in 2004, this new group exhibits extensive drug resistance (XDR).

Sandra Van Puyvelde, PhD, an assistant professor and the first author of the study, said, “All antibiotic resistance genes contributing to ‘XDR’ are present on the same plasmid. This is worrying because a plasmid is a mobile genetic element that could be transferred to other bacteria. While accumulating more antibiotic resistance, we discovered that the novel Salmonella typhimurium line is also showing further genetic and behavioral changes which suggest ongoing evolution of the bacteria towards bloodstream infections.” The study was published on September 19, 2019, in the journal Nature Communications.

Related Links:
Institute of Tropical Medicine


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Auto-Chemistry Analyzer
CS-1200
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Latest Microbiology News

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Innovative Diagnostic Approach for Bacterial Infections to Enable Faster and Effective Treatment