We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Next-Generation Immunoassay Developed for Chagas Diseases

By LabMedica International staff writers
Posted on 26 Oct 2017
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a major health and economic problem in Latin America for which no vaccine or appropriate drugs for large-scale public health interventions are yet available.

Accurate diagnosis is essential for the early identification and follows up of vector-borne cases and to prevent transmission of the disease by way of blood transfusions and organ transplantation. Diagnosis is routinely performed using serological methods, some of which require the laborious production of parasite lysates, parasite antigenic fractions or purified recombinant antigens.

Image: Trypanosoma cruzi amastigotes in heart tissue from a patient with Chagas disease (Photo courtesy of the CDC).
Image: Trypanosoma cruzi amastigotes in heart tissue from a patient with Chagas disease (Photo courtesy of the CDC).

Medical Parasitologists at the National University of General San Martín (Buenos Aires, Argentina) obtained human serum samples from T. cruzi-infected patients who were in the asymptomatic chronic stage of the disease without cardiac or gastrointestinal compromise (age range: 11 to 51 years old, median age: 20). Serum samples were collected from clotted blood obtained by venipuncture and analyzed for T. cruzi-specific antibodies with commercially available kits: enzyme-linked immunosorbent assay (ELISA) using total parasite homogenate and indirect hemagglutination (IHA).

The team performed a serological assessment of 27 selected epitopes and of their use in a novel multipeptide-based diagnostic method. A combination of seven of these peptides was finally evaluated in ELISA format against a panel of 199 sera samples (Chagas-positive and negative, including sera from patients with leishmaniasis). The multipeptide formulation displayed a high diagnostic performance, with a sensitivity of 96.3% and a specificity of 99.2%.

The authors concluded that their results provided a novel, robust multi-epitope formulation as a basis for the development of improved peptide-based serodiagnosis for chagas disease. In contrast with chimeric DNA constructs that encode multiepitope recombinant proteins, the fact that this diagnostic reagent is based on the combination of short peptides that can be synthesized separately and easily formulated in a mix-and-match approach, means that it can be improved successively over time with only a reasonable effort. The study was published on October 9, 2017, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
National University of General San Martín



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Latest Microbiology News

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

Clinical Decision Support Software a Game-Changer in Antimicrobial Resistance Battle

New CE-Marked Hepatitis Assays to Help Diagnose Infections Earlier