We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

PCR-RFLP Distinguishes Between Co-Endemic New World Leishmania Species

By LabMedica International staff writers
Posted on 09 Sep 2014
In a study of clinical samples from patients in southeast Mexico, a PCR-RFLP assay was effective in differentiating between co-endemic species of Leishmania—enabling more fine-tuned diagnoses and more appropriate treatments for patients in a given population with different forms of American (New World) leishmaniasis.

American cutaneous leishmaniasis (CL) includes: localized CL (LCL) caused by L. (L.) mexicana; diffuse CL (DCL) caused by L. (L.) amazonensis, Leishmania (L.) venezuelensis, and Leishmania (L.) pifanoi; and mucosal CL (MCL) caused by members of the L. braziliensis complex. In endemic regions, multiple species of Leishmania may coexist. Identification of the infecting species based on clinical symptoms is difficult, especially since several species can cause both LCL and MCL. Diagnostic confirmation and correct identification are important for appropriate species-specific therapeutics as well as epidemiologic studies.

Image: Map of Mexico with Leishmania endemic regions studied shown in maroon coloring – from left to right the states: Veracruz, Tabasco, Campeche, and Quintana Roo (Photo courtesy of Prof. Monroy-Ostria A. et al., the Instituto Politecnico Nacional, and the journal Interdisciplinary Perspectives on Infectious Diseases).
Image: Map of Mexico with Leishmania endemic regions studied shown in maroon coloring – from left to right the states: Veracruz, Tabasco, Campeche, and Quintana Roo (Photo courtesy of Prof. Monroy-Ostria A. et al., the Instituto Politecnico Nacional, and the journal Interdisciplinary Perspectives on Infectious Diseases).

In an international collaboration led by Amalia Monroy-Ostria, professor at the Escuela Nacional de Ciencias Biológicas of the Instituto Politecnico Nacional (IPN; Mexico City, Mexico), a PCR-RFLP (restriction fragment length polymorphism) assay based on the conserved ITS1 (internal transcribed spacer 1) genes was evaluated for direct diagnosis of leishmaniasis and identification of parasite species that, to small but significant extent, coexist in Leishmania-endemic regions of southeast Mexico. Most clinical samples examined, 109/116 (94%), gave patterns similar to L. mexicana, 2 gave patterns similar to L. braziliensis, and 5 gave patterns that suggest a co-infection of 2 strains: co-infection of L. (L.) mexicana and L. (V.) braziliensis or of L. (L.) mexicana and L. (L.) amazonensis. Of 21 Leishmania isolates, 52% displayed a pattern similar to the L. (L.) mexicana strain, 5% showed a mixed pattern compatible with L. (L.) mexicana and L. (V.) braziliensis, 8 with L. (L.) amazonensis and L. (L.) mexicana, and 1 to L. (V.) braziliensis.

The ITS1 PCR-RFLP assay enables diagnosis of leishmaniasis directly (without need for parasite isolation from clinical samples) and simultaneous determination of most infecting species of New World Leishmania, in relatively short time and low cost. Improvements can be made, for example, by further tailoring to sequences that may be found to more specifically characterize local Leishmania species for a given region (e.g., with respect to gene sequences amplified in the PCR or to restriction enzymes used for the RFLP).

The study, by Monroy-Ostria A. et al., was published in the journal Interdisciplinary Perspectives on Infectious Diseases, July 2014.

Related Links:

Instituto Politecnico Nacional



New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Chemistry Analyzer
MS100
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Latest Microbiology News

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Innovative Diagnostic Approach for Bacterial Infections to Enable Faster and Effective Treatment