We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Breakthrough Method to Enable Early Risk Stratification of Deadly Blood Cancer

By LabMedica International staff writers
Posted on 04 Dec 2024

Multiple myeloma is an incurable blood cancer, with patients typically surviving an average of eight years after diagnosis. Those with smoldering multiple myeloma experience no symptoms until the disease advances to multiple myeloma. However, there is currently no reliable method in clinical settings to predict which patients will progress to multiple myeloma. Now, new research has demonstrated a novel technique that can accurately predict the likelihood that a patient with smoldering multiple myeloma will develop full-blown multiple myeloma.

In a groundbreaking study, researchers at the University of Manitoba (Winnipeg, Canada) utilized three-dimensional (3D) imaging and microscopy to examine genetic material within a patient's cells, revealing genomic changes and instability. By focusing on the telomeres, the protective ends of chromosomes, the 3D measurement tools developed by the team could determine whether a cell is stable or cancerous, even before symptoms emerge.


Image: The breakthrough by Dr. Sabine Mai and her team enables early risk-stratification of smoldering multiple myeloma (Photo courtesy of University of Manitoba)
Image: The breakthrough by Dr. Sabine Mai and her team enables early risk-stratification of smoldering multiple myeloma (Photo courtesy of University of Manitoba)

To achieve these pioneering results, the researchers employed single-cell nuclear imaging using 3D analysis. They also applied super-resolution imaging to observe cancer-related DNA and the genomic structure at a nanometer scale. This advanced technology holds promise not only for identifying smoldering multiple myeloma progression but also for detecting other types of cancer. The findings, co-published in the American Journal of Hematology, build on previous research identifying thyroid cancer histotypes published last year.

“This breakthrough allows us to risk-stratify smoldering multiple myeloma to identify the subgroup with high risk of progression, which allows for tailored treatments of this risk group,” said Dr. Sabine Mai, UM Canada Research Chair in genomic instability and nuclear architecture in cancer, who led the research team. “Equally important, the published assay [lab procedure] allows us to monitor the larger subgroup of patients with stable smoldering multiple myeloma.”

If we apply the right treatments early enough, the outcome will be the increased progression-free survival of patients — and potentially someday, a cure for myeloma,” added Dr. Mai.


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Chikungunya Rapid Test
Chikungunya IgG/IgM Rapid Test Kit
New
CMV QC
Inactivated Cytomegalovirus High Control

Latest Pathology News

New Computational Model Significantly Improves Quality of Microscopy Images

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

AI Model Excels at Analyzing Diverse Cancer Types and Unseen IHC Data