We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Diagnoses Cause of Kidney Failure

By LabMedica International staff writers
Posted on 01 Feb 2012
Discoveries about the basic workings of endothelial cells could lead to a diagnostic test for the serious kidney disease known as hemolytic uremic syndrome (HUS).

HUS is a potentially life-threatening condition and often occurs after gastrointestinal infection with Escherichia coli O157:H7, which produces Shiga toxins (Stx) that cause hemolytic anemia, thrombocytopenia, and renal injury.

Scientists at University of Toronto (ON, Canada) discovered a biological pathway never before known to have played a role in the development of HUS. Specifically, they found that the toxin can increase the level of a chemokine, namely stromal cell-derived factor-1 (SDF-1), and its receptor, C-X-C chemokine receptor type 4 (CXCR4). Chemokines are small secreted proteins that stimulate cells to move or migrate. CXCR4 was already known to stimulate the release and migration of the precursors of white blood cells from bone marrow, to change how blood vessels grow and to help the AIDS virus enter cells.

Blood tests were performed on children with E. coli and all measurements of SDF-1 were performed on blinded samples by a sandwich enzyme-linked immunosorbent assay (ELISA) (R&D Systems, Minneapolis, MN, USA). The results indicated that those who went on to develop HUS had as much as four times higher levels of the protein SDF-1, than other children with E. coli who did not go on to develop HUS. This suggests that a blood test could be used to predict who is most likely to develop the potentially fatal HUS, meaning they could be monitored more closely. The scientists found that too much communication between SDF-1 and CXCR4 molecules can also impact the development of HUS in animals and humans.

Philip A. Marsden, MD, FRCPC, who is a nephrologist at Saint Michael’s Hospital (Toronto, ON, Canada) and senior author of the study, said, "A safe water supply and clean food supply chain is the most important step in preventing HUS caused by E. coli. If we can measure SDF-1 levels in real time during an E. coli outbreak and confirm these findings, then we have a strong case for a trial of CXCR4 antagonists in patients with toxin-producing E. coli to see if it prevents or improves cases of HUS.” The study was published on January 9, 2012, in the Journal of Clinical Investigation.

Related Links:
University of Toronto
R&D Systems
Saint Michael’s Hospital


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Unit-Dose Packaging solution
HLX
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test
New
Thyroid ELISA Kit
AESKULISA a-TPO

Latest Immunology News

Computational Tool Predicts Immunotherapy Outcomes for Metastatic Breast Cancer Patients

Biomarker Could Predict Immunotherapy Response in Liver Cancer

Epigenetic Test Could Determine Efficacy of New Immunotherapy Treatments Against Multiple Myeloma