We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Isolation of Pure Form of Coronavirus Nucleoprotein to Help Create More Accurate COVID-19 Antibody Tests

By LabMedica International staff writers
Posted on 09 Feb 2022

Biologists have isolated the coronavirus nucleoprotein in its pure form to improve the accuracy and sensitivity of COVID-19 antibody tests.

Scientists from Research Center of Biotechnology RAS (Moscow, Russian Federation) have demonstrated that at least two different methods of directed RNA removal are required for obtaining SARS-CoV-2 nucleoprotein, completely free from any RNA admixtures. Such preparation helps to determine the presence of antibodies to SARS-CoV-2 with significantly higher sensitivity.


Illustration
Illustration

The SARS-CoV-2 nucleoprotein is the main protein in viral particles. It folds the RNA of the virus into a compact structure. This is needed to transfer the hereditary material to the "next generations" of virions (viral particles) before they are separated from the infected cell. COVID-19 patients usually develop antibodies (immunity proteins that are specifically connected to a specific fragment of the "enemy" protein) to the SARS-CoV-2 nucleoprotein, even if the infection was asymptomatic.

But people inoculated with mRNA vaccines and adenovirus vaccines such as Sputnik V or ChAdOx1 (AstraZeneca) do not develop antibodies to the nucleoprotein. The reason is that these vaccines do not code nucleoprotein, but rather S-protein, "spikes" that allow the virus to attach to the human cell and infect it. The immunity of people who had contracted the virus, unlike vaccinated people, encounters all the proteins of the virus and develops all forms of antibodies to nucleoprotein too.

To create more accurate antibody tests, it is necessary to isolate the pure form of protein to which the antibodies are specific. The test works because the protein finds "its" antibody and binds to it. In the case of a nucleoprotein, however, there are many obstacles for binding of antibodies. Part of the protein's surface is closed by bound RNA, and another part is inaccessible because nucleoproteins form huge supramolecular structures. Since the nucleoprotein "in the line of duty" binds to RNA, separating one from the other is a complicated process.

"With nucleoprotein antibody tests, it is possible to know exactly whether a vaccinated person has been infected with SARS-CoV-2. Tests for antibodies to the S-protein do not provide this clear information," said Ivan I. Vorobiev, Doctor of Biological Sciences, one of the authors of the study and Head of the laboratory of Mammals Cells Bioengineering of the Research Center of Biotechnology RAS. "Apparently, the omicron variant can easily infect vaccinated persons, but it rarely re-infects those who have already been infected and very rarely infects those who have been infected and vaccinated afterward. There are also commercial tests for antibodies to the SARS-CoV-2 virus nucleoprotein. Unfortunately, some of them give plenty of false positives, while others, with low sensitivity, give many false negatives."

Related Links:
Research Center of Biotechnology RAS
 


Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Chemistry Analyzer
MS100
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Latest COVID-19 News

New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases

Long COVID Etiologies Found in Acute Infection Blood Samples

Novel Device Detects COVID-19 Antibodies in Five Minutes