Two New Diagnostic Tests Can Differentiate Between COVID-19 Variants and Multiple Viruses with Rapid Turnaround Times

By LabMedica International staff writers
Posted on 24 Feb 2021
Two new tests can differentiate between COVID-19 variants and multiple viruses with rapid turnaround times.

Researchers at University of Minnesota Medical School (Minneapolis, MN, USA) have developed two new rapid diagnostic tests for COVID-19 - one to detect COVID-19 variants and one to help differentiate with other illnesses that have COVID-19-like symptoms.

Illustration

The first test is a rapid diagnostic test that can differentiate between COVID-19 variants. This test can be performed without specialized expertise or equipment. It uses technology similar to at-home pregnancy testing and produces results in about an hour. The second, more sensitive test allows researchers to analyze the same sample simultaneously for COVID-19 (SARS-CoV-2), Influenza A and B and respiratory syncytial virus by measuring fluorescence. These viruses manifest with similar symptoms, so being able to detect and differentiate them adds a new diagnostic tool to slow the spread of COVID-19. This test also takes about an hour and could be easily scaled so many more tests can be performed. The necessary equipment is present in most diagnostics laboratories and many research laboratories.

The technology for both tests uses the cutting-edge CRISPR/Cas9 system. Using commercial reagents, they describe a Cas-9-based methodology for nucleic acid detection using lateral flow assays and fluorescence signal generation. The researchers are now seeking to enhance sensitivity and real-world application of the first test in support of rapidly detecting and identifying COVID-19 variants. In order to provide access to their new testing technology for healthcare providers and the public, the researchers are currently exploring ways to scale up and license their new diagnostics.

“The approval of the SARS-CoV-2 vaccine is highly promising, but the time between first doses and population immunity may be months,” said Mark J. Osborn, PhD, assistant professor of Pediatrics at the University of Minnesota Medical School and first author of this paper. “This testing platform can help bridge the gap between immunization and immunity.”

Related Links:
University of Minnesota Medical School


Latest COVID-19 News