We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Sensor Rapidly Detects COVID-19 Infection Status, Severity, and Immunity

By LabMedica International staff writers
Posted on 05 Oct 2020
A new type of multiplexed test (a test that combines multiple kinds of data) with a low-cost sensor could enable diagnosis of a COVID infection through rapid analysis of small volumes of saliva or blood, without the involvement of a medical professional, in less than 10 minutes.

One feature of the COVID-19 virus that makes it so difficult to contain is that it can be easily spread to others by a person who has yet to show any signs of infection. The carrier of the virus might feel perfectly well and go about their daily business - taking the virus with them to work, to the home of a family member, or to public gatherings. A crucial part of the global effort to stem the spread of the pandemic, therefore, is the development of tests that can rapidly identify infections in people who are not yet symptomatic.

Image: An artist`s rendering showing how the sensor contains areas that each detect a different indicator of a COVID-19 infection (Photo courtesy of Caltech)
Image: An artist`s rendering showing how the sensor contains areas that each detect a different indicator of a COVID-19 infection (Photo courtesy of Caltech)

Now, researchers at the California Institute of Technology (Caltech Pasadena, CA, USA) have developed wireless sensors that can monitor conditions such as gout, as well as stress levels, through the detection of extremely low levels of specific compounds in blood, saliva, or sweat. The sensors are made of graphene, a sheet-like form of carbon. A plastic sheet etched with a laser generates a 3D graphene structure with tiny pores. Those pores create a large amount of surface area on the sensor, which makes it sensitive enough to detect, with high accuracy, compounds that are only present in very small amounts. In this sensor, the graphene structures are coupled with antibodies, immune system molecules that are sensitive to specific proteins, like those on the surface of a COVID virus, for example.

Previous versions of the sensor were impregnated with antibodies for the hormone cortisol, which is associated with stress, and uric acid, which at high concentrations causes gout. The new version of the sensor, which has been named SARS-CoV-2 RapidPlex, contains antibodies and proteins that allow it to detect the presence of the virus itself; antibodies created by the body to fight the virus; and chemical markers of inflammation, which indicate the severity of the COVID-19 infection. Established COVID-testing technologies usually take hours or even days to produce results. Those technologies also require expensive, complicated equipment, whereas Caltech’s system is simple and compact. So far, the device has been tested only in the lab with a small number of blood and saliva samples obtained for medical research purposes from individuals who have tested positive or negative for COVID-19. Though preliminary results indicate that the sensor is highly accurate, a larger-scale test with real-world patients rather than laboratory samples must be performed to definitively determine its accuracy, according to the researchers.

With the pilot study now completed, the researchers next plan to test how long the sensors last with regular use, and to begin testing them with hospitalized COVID-19 patients. Following in-hospital testing, the team would like to study the suitability of the tests for in-home use. Following testing, the device will need to receive regulatory approval before it is available for widespread use at home.

"This is the only telemedicine platform I've seen that can give information about the infection in three types of data with a single sensor," said Wei Gao, assistant professor in the Andrew and Peggy Cherng department of medical engineering, in whose lab the research was conducted. "In as little as a few minutes, we can simultaneously check these levels, so we get a full picture about the infection, including early infection, immunity, and severity."

"Our ultimate aim really is home use," added Gao. "In the following year, we plan to mail them to high-risk individuals for at-home testing. And in the future, this platform could be modified for other types of infectious disease testing at home."

Related Links:
California Institute of Technology


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Latest COVID-19 News

New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases

Long COVID Etiologies Found in Acute Infection Blood Samples

Novel Device Detects COVID-19 Antibodies in Five Minutes