We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lipid Biomarker Concentrations Associated with CVD Risk

By LabMedica International staff writers
Posted on 08 Jan 2018
Circulating concentrations of lipid biomarkers are consistently associated with cardiovascular disease (CVD) events and thus are considered major indicators of metabolic health, but the evidence for a relationship with cancer risk, however, is not entirely consistent.

High levels of low-density lipoprotein cholesterol (LDL-C) have been consistently associated with up to 1.7-fold increases in risk of CVD in observational studies. Other lipid parameters, such as high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs), or lipoprotein (a) (Lp(a)), have also been increasingly investigated in relation to risk of atherosclerotic CVD or coronary heart disease.

Image: The Cobas 6000 modular analytical system (Photo courtesy of Roche).
Image: The Cobas 6000 modular analytical system (Photo courtesy of Roche).

Scientists at the German Cancer Research Center (DKFZ, Heidelberg, Germany) selected a case-cohort sample out of the prospective EPIC–Heidelberg study, including a random sub-cohort of 2,739, and 1.632 cases of cancer, 761 cancer mortality, 1,070 CVD and 381 CVD mortality. Concentrations of lipid biomarkers were measured in pre-diagnostic blood samples. Participants were recruited between 1994 and 1998 and were aged between 35 and 65 years.

Basic clinical chemistry measurements were performed including serum concentrations of total cholesterol (TC), HDL-C, TG, apo(a), Apolipoprotein B100 (apoB-100), and Lp(a). All measurements were made using the Roche Cobas 6000 analytical system. The Friedewald formula (LDL = TC – HDL – TG/5) was applied to calculate LDL-C values. High levels of circulating apoB-100 and TG were inversely associated and high HDL-C levels were positively associated with breast cancer risk. Higher levels of Lp(a) were associated with an increase in prostate cancer risk and high levels of apo(a) were associated with a decrease in lung cancer risk.

High TC, HDL-C, apo(a), and Lp(a) levels were associated with a reduction in total cancer mortality. All lipid biomarkers were associated with risk of myocardial infarction, whereby TC, apoB-100, TG, and Lp(a) were positively and HLD-C and apo(a) inversely associated with risk. Only high levels of TG were associated with an increased risk of stroke. None of the lipids were associated with risk of colorectal cancer and with risk of CVD mortality.

The authors concluded that the inverse associations of lipid biomarkers with cancer incidence and mortality, with the exception of positive associations of HDL-C and Lp(a) with breast and prostate cancer risk, respectively. Thus, the observed cancer risk pattern clearly differs from the CVD risk pattern. The study was published on December 19, 2017, in the journal BMC Medicine.

Related Links:
German Cancer Research Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Latest Clinical Chem. News

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases