We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Could Detect Abusive Head Trauma in Infants

By LabMedica International staff writers
Posted on 26 Apr 2017
A blood test has been developed and refined that could help clinicians identify infants who may have had bleeding of the brain as a result of abusive head trauma, sometimes referred to as shaken baby syndrome.

Approximately 30% of abusive head trauma (AHT) diagnoses are missed when caretakers provide inaccurate histories or when infants have nonspecific symptoms such as vomiting or fussiness. Missed diagnoses can be catastrophic as AHT can lead to permanent brain damage and even death.

Image: The Ziplex System, a medium-density microarray platform (Photo courtesy of Axela).
Image: The Ziplex System, a medium-density microarray platform (Photo courtesy of Axela).

A team of scientists working with the Children's Hospital of Pittsburgh performed a retrospective study on a cohort of 99 patients followed by a prospective cohort of 599 patients to derive and validate the Biomarkers of Infant Brain Injury Score. The Biomarkers of Infant Brain Injury Score predicted intracranial hemorrhage with a higher sensitivity than clinical judgment, the current criterion standard.

Binary logistic regression was used to develop a multivariable model incorporating three serum biomarkers, matrix metallopeptidase-9, neuron-specific enolase, and vascular cellular adhesion molecule-1, and one clinical variable, total hemoglobin. The model was then prospectively validated. Multiplex biomarker measurements were performed using Flow-Thru microarray technology on the Ziplex System, which has potential as a point-of-care system. The Axela's automated testing system allowed the researchers to measure multiple biomarkers simultaneously using an extremely small amount of blood, an important characteristic of a test designed to be used in infants.

The test correctly detected acute intracranial hemorrhage because of abusive head trauma approximately 90% of the time, a much higher rate than the sensitivity of clinical judgement, which is approximately 70%. The specificity of the test was 48% and the sensitivity was 89.3%. The team aimed for the test to be highly sensitive rather than maximizing accuracy, since missing a diagnosis has more serious consequences than performing brain imaging in babies without the condition.

The authors concluded that The Biomarkers for Infant Brain Injury Score, a multivariable model using three serum biomarker concentrations and serum hemoglobin, can identify infants with acute intracranial hemorrhage. Rachel Pardes Berger, MD, MPH, a senior author of the study, said, “The test is not intended to replace clinical judgement, which is crucial. Rather, we believe that it can supplement clinical evaluation and in cases where symptoms may be unclear, help physicians make a decision about whether an infant needs brain imaging.” The study was published on April 10, 2017, in the journal JAMA Pediatrics.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Latest Clinical Chem. News

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases